Studies on the mechanism of resistance to rapamycin in human cancer cells.

Rapamycin is a potent cytostatic agent that arrests cells in the G1 phase of the cell cycle. The relationships between cellular sensitivity to rapamycin, drug accumulation, expression of mammalian target of rapamycin (mTOR), and inhibition of growth factor activation of ribosomal p70S6 kinase (p70(S6k)) and dephosphorylation of pH acid stable protein I (eukaryotic initiation factor 4E binding protein) were examined. We show that some cell lines derived from childhood tumors are highly sensitive to growth inhibition by rapamycin, whereas others have high intrinsic resistance (>1000-fold). Accumulation and retention of [14C]rapamycin were similar in sensitive and resistant cells, with all cells examined demonstrating a stable tight binding component. Western analysis showed levels of mTOR were similar in each cell line (<2-fold variation). The activity of p70(S6k), activated downstream of mTOR, was similar in four cell lines (range, 11.75-41. 8 pmol/2 x 10(6) cells/30 min), but activity was equally inhibited in cells that were highly resistant to rapamycin-induced growth arrest. Rapamycin equally inhibited serum-induced phosphorylation of pH acid stable protein I in Rh1 (intrinsically resistant) and sensitive Rh30 cells. In serum-fasted Rh30 and Rh1 cells, the addition of serum rapidly induced c-MYC (protein) levels. Rapamycin blocked induction in Rh30 cells but not in Rh1 cells. Serum-fasted Rh30/rapa10K cells, selected for high level acquired resistance to rapamycin, showed >/=10-fold increased c-MYC compared with Rh30. These results suggest that the ability of rapamycin to inhibit c-MYC induction correlates with intrinsic sensitivity, whereas failure of rapamycin to inhibit induction or overexpression of c-MYC correlates with intrinsic and acquired resistance, respectively.

[1]  M. West,et al.  Translational induction of the c-myc oncogene via activation of the FRAP/TOR signalling pathway , 1998, Oncogene.

[2]  S. Snyder,et al.  RAFT1 phosphorylation of the translational regulators p70 S6 kinase and 4E-BP1. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[3]  A. Gingras,et al.  4E-BP1, a repressor of mRNA translation, is phosphorylated and inactivated by the Akt(PKB) signaling pathway. , 1998, Genes & development.

[4]  M. Andjelkovic,et al.  Phosphorylation and activation of p70s6k by PDK1. , 1998, Science.

[5]  M. Kasuga,et al.  Regulation of eIF-4E BP1 Phosphorylation by mTOR* , 1997, The Journal of Biological Chemistry.

[6]  A. Gingras,et al.  The insulin-induced signalling pathway leading to S6 and initiation factor 4E binding protein 1 phosphorylation bifurcates at a rapamycin-sensitive point immediately upstream of p70s6k , 1997, Molecular and cellular biology.

[7]  Christine C. Hudson,et al.  Phosphorylation of the translational repressor PHAS-I by the mammalian target of rapamycin. , 1997, Science.

[8]  G. Thomas,et al.  The principal rapamycin-sensitive p70(s6k) phosphorylation sites, T-229 and T-389, are differentially regulated by rapamycin-insensitive kinase kinases , 1996, Molecular and cellular biology.

[9]  R. Abraham,et al.  Direct inhibition of the signaling functions of the mammalian target of rapamycin by the phosphoinositide 3‐kinase inhibitors, wortmannin and LY294002. , 1996, The EMBO journal.

[10]  A. Gingras,et al.  4E-BP1 phosphorylation is mediated by the FRAP-p70s6k pathway and is independent of mitogen-activated protein kinase. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[11]  R. Pearson,et al.  The principal target of rapamycin‐induced p70s6k inactivation is a novel phosphorylation site within a conserved hydrophobic domain. , 1995, The EMBO journal.

[12]  F. Nielsen,et al.  Growth-dependent translation of IGF-II mRNA by a rapamycin-sensitive pathway , 1995, Nature.

[13]  N. Sonenberg,et al.  Eukaryotic Translation Initiation Factor 4E Regulates Expression of Cyclin D1 at Transcriptional and Post-transcriptional Levels (*) , 1995, The Journal of Biological Chemistry.

[14]  V. Berlin,et al.  RAPT1, a mammalian homolog of yeast Tor, interacts with the FKBP12/rapamycin complex. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[15]  A. Nairn,et al.  Rapamycin selectively inhibits translation of mRNAs encoding elongation factors and ribosomal proteins. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[16]  P. Houghton,et al.  Antisense-mediated reduction in insulin-like growth factor-I receptor expression suppresses the malignant phenotype of a human alveolar rhabdomyosarcoma. , 1994, The Journal of clinical investigation.

[17]  Paul Tempst,et al.  RAFT1: A mammalian protein that binds to FKBP12 in a rapamycin-dependent fashion and is homologous to yeast TORs , 1994, Cell.

[18]  Stuart L. Schreiber,et al.  A mammalian protein targeted by G1-arresting rapamycin–receptor complex , 1994, Nature.

[19]  G. Thomas,et al.  Rapamycin selectively represses translation of the "polypyrimidine tract" mRNA family. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[20]  L. Shantz,et al.  Overproduction of ornithine decarboxylase caused by relief of translational repression is associated with neoplastic transformation. , 1994, Cancer research.

[21]  William Arbuthnot Sir Lane,et al.  Isolation of the cyclosporin-sensitive T cell transcription factor NFATp. , 1993, Science.

[22]  J. Kunz,et al.  Cyclosporin A, FK506 and rapamycin: more than just immunosuppression. , 1993, Trends in biochemical sciences.

[23]  J. Blenis,et al.  Failure of rapamycin to block proliferation once resting cells have entered the cell cycle despite inactivation of p70 S6 kinase. , 1993, The Journal of biological chemistry.

[24]  S. Tapscott,et al.  Monoclonal antibodies to the myogenic regulatory protein MyoD1: epitope mapping and diagnostic utility. , 1992, Cancer research.

[25]  C. Klee,et al.  Calcineurin phosphatase activity in T lymphocytes is inhibited by FK 506 and cyclosporin A. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[26]  G. Crabtree,et al.  Nuclear association of a T-cell transcription factor blocked by FK-506 and cyclosporin A , 1991, Nature.

[27]  Stuart L. Schreiber,et al.  Calcineurin is a common target of cyclophilin-cyclosporin A and FKBP-FK506 complexes , 1991, Cell.

[28]  S. Schreiber,et al.  Chemistry and biology of the immunophilins and their immunosuppressive ligands. , 1991, Science.

[29]  E. Kohn,et al.  Insulin-like growth factor II acts as an autocrine growth and motility factor in human rhabdomyosarcoma tumors. , 1990, Cell growth & differentiation : the molecular biology journal of the American Association for Cancer Research.

[30]  J. Howbert,et al.  Studies on the cellular pharmacology of N-(4-methylphenylsulfonyl)-N'-(4-chlorophenyl)-urea. , 1990, Biochemical pharmacology.

[31]  Nolan H. Sigal,et al.  A cytosolic binding protein for the immunosuppressant FK506 has peptidyl-prolyl isomerase activity but is distinct from cyclophilin , 1989, Nature.

[32]  M. Israel,et al.  Autonomous growth of a human neuroblastoma cell line is mediated by insulin-like growth factor II. , 1989, The Journal of clinical investigation.