Automatic thematic classification of election manifestos
暂无分享,去创建一个
[1] Dustin Hillard,et al. Automated classification of congressional legislation , 2006, DG.O.
[2] Maarten Marx,et al. Advanced Information Access to Parliamentary Debates , 2009, J. Digit. Inf..
[3] Valentin Jijkoun,et al. Electoral search using the VerkiezingsKijker: an experience report , 2007, WWW '07.
[4] Chih-Jen Lin,et al. A Practical Guide to Support Vector Classication , 2008 .
[5] Corinna Cortes,et al. Support-Vector Networks , 1995, Machine Learning.
[6] Ralf Steinberger,et al. JRC Eurovoc Indexer JEX - A freely available multi-label categorisation tool , 2012, LREC.
[7] Cornelis H. A. Koster,et al. Multi-classification of Patent Applications with Winnow , 2003, Ershov Memorial Conference.
[8] Walter Daelemans,et al. An efficient memory-based morphosyntactic tagger and parser for Dutch , 2007, CLIN 2007.
[9] Dustin Hillard,et al. Computer-Assisted Topic Classification for Mixed-Methods Social Science Research , 2008 .
[10] Suzan Verberne,et al. Text Representations for Patent Classification , 2013, CL.
[11] Stefan Kaufmann,et al. Classifying Party Affiliation from Political Speech , 2008 .
[12] George Forman,et al. Tackling concept drift by temporal inductive transfer , 2006, SIGIR.
[13] Fabrizio Sebastiani,et al. Machine learning in automated text categorization , 2001, CSUR.
[14] N. Littlestone. Learning Quickly When Irrelevant Attributes Abound: A New Linear-Threshold Algorithm , 1987, 28th Annual Symposium on Foundations of Computer Science (sfcs 1987).
[15] Adriano M. Pereira,et al. Exploiting temporal contexts in text classification , 2008, CIKM '08.
[16] Sandra L. Resodihardjo,et al. Political Attention in a Coalition System: Analysing Queen's Speeches in the Netherlands 1945–2007 , 2009 .
[17] Maarten Marx,et al. The design of PoliDocs: a web information system for the disclosure of Dutch parliamentary publications , 2009 .
[18] R. B. Andeweg,et al. Political Parties and the Democratic Mandate , 2006 .
[19] Tom Louwerse,et al. Political parties and the democratic mandate : comparing collective mandate fulfilment in the United Kingdom and the Netherlands , 2011 .
[20] Gerhard Weikum,et al. Language-model-based pro/con classification of political text , 2010, SIGIR.
[21] Cornelis H. A. Koster,et al. Taming Wild Phrases , 2003, ECIR.
[22] Cornelis H. A. Koster,et al. On the Importance of Parameter Tuning in Text Categorization , 2006, Ershov Memorial Conference.
[23] Stefan Kaufmann,et al. Language and Ideology in Congress , 2011, British Journal of Political Science.
[24] Ido Dagan,et al. Mistake-Driven Learning in Text Categorization , 1997, EMNLP.
[25] I. Budge,et al. Mapping Policy Preferences: Estimates for Parties, Electors, and Governments 1945-1998 , 2001 .
[26] H. Edelsbrunner,et al. Efficient algorithms for agglomerative hierarchical clustering methods , 1984 .
[27] Dragomir R. Radev,et al. How to Analyze Political Attention with Minimal Assumptions and Costs , 2010 .
[28] Wagner Meira,et al. Understanding temporal aspects in document classification , 2008, WSDM '08.
[29] Gosse Bouma,et al. Accurate Stemming of Dutch for Text Classification , 2001, CLIN.
[30] Bruno Pouliquen,et al. Automatic annotation of multilingual text collections with a conceptual thesaurus , 2006, ArXiv.
[31] Maarten Marx,et al. Focused retrieval and result aggregation with political data , 2010, Information Retrieval.