Direct scattering transform of large wave packets.

We apply the Magnus expansion to the Zakharov-Shabat system, providing a basis for a systematic construction of high-order numerical schemes to solve the direct scattering problem of the integrable one-dimensional nonlinear Schrödinger equation. The presented numerical simulations of previously unreachable wave fields with up to 128 solitons employing second-, fourth-, and sixth-order schemes stresses the need for delicate numerics to identify the eigenvalues and especially phase coefficients. This approach lays the foundation for the study of large optical wave packets, providing fundamental information about their scattering data content and origin of various nonlinear effects.

[1]  E. Podivilov,et al.  Efficient numerical method for solving the direct Zakharov-Shabat scattering problem , 2015 .

[2]  S. Trillo,et al.  Quantitative approach to breather pair appearance in nonlinear modulational instability. , 2019, Optics letters.

[3]  A. Gelash Formation of rogue waves from a locally perturbed condensate. , 2017, Physical review. E.

[4]  Igor Chekhovskoy,et al.  Numerical algorithm with fourth-order accuracy for the direct Zakharov-Shabat problem. , 2019, Optics letters.

[5]  Vladimir E. Zakharov,et al.  Turbulence in Integrable Systems , 2009 .

[6]  Frank R. Kschischang,et al.  Information Transmission Using the Nonlinear Fourier Transform, Part I: Mathematical Tools , 2012, IEEE Transactions on Information Theory.

[7]  P. Suret,et al.  Statistical Properties of the Nonlinear Stage of Modulation Instability in Fiber Optics. , 2019, Physical review letters.

[8]  V. E. Zakharov,et al.  Integrable turbulence and formation of rogue waves , 2014, 1409.4692.

[9]  Pierre Suret,et al.  Optical rogue waves in integrable turbulence. , 2014, Physical review letters.

[10]  P. Suret,et al.  Nonlinear random optical waves: Integrable turbulence, rogue waves and intermittency , 2015, 1509.06556.

[11]  A. Osborne,et al.  Computation of the direct scattering transform for the nonlinear Schroedinger equation , 1992 .

[12]  S. Burtsev,et al.  Numerical Algorithms for the Direct Spectral Transform with Applications to Nonlinear Schrödinger Type Systems , 1998 .

[13]  A. Vasylchenkova,et al.  Direct nonlinear Fourier transform algorithms for the computation of solitonic spectra in focusing nonlinear Schrödinger equation , 2017, Commun. Nonlinear Sci. Numer. Simul..

[14]  Sitai Li,et al.  Auto-modulation versus breathers in the nonlinear stage of modulational instability. , 2018, Optics letters.

[15]  Pierre Suret,et al.  Inverse scattering transform analysis of rogue waves using local periodization procedure , 2015, Scientific Reports.

[16]  Sergei K. Turitsyn,et al.  Soliton-based discriminator of noncoherent optical pulses , 2008 .

[17]  A. Osborne Numerical inverse scattering transform for the periodic, defocusing nonlinear Schrödinger equation , 1993 .

[18]  S. Blanes,et al.  The Magnus expansion and some of its applications , 2008, 0810.5488.

[19]  A. Mussot,et al.  Solitonization of a dispersive wave. , 2016, Optics letters.

[20]  Sergei K. Turitsyn,et al.  Nonlinear Fourier Transform for Optical Data Processing and Transmission: Advances and Perspectives , 2017, 2018 European Conference on Optical Communication (ECOC).

[21]  S. K. Turitsyn,et al.  New approaches to coding information using inverse scattering transform , 2017, Physical review letters.

[22]  P. Suret,et al.  Nonlinear Evolution of the Locally Induced Modulational Instability in Fiber Optics. , 2018, Physical review letters.

[23]  A. Gelash,et al.  Strongly interacting soliton gas and formation of rogue waves , 2018, Physical Review E.

[24]  Jaroslaw E Prilepsky,et al.  Contour integrals for numerical computation of discrete eigenvalues in the Zakharov-Shabat problem. , 2018, Optics letters.

[25]  N Akhmediev,et al.  Integrable Turbulence and Rogue Waves: Breathers or Solitons? , 2016, Physical review letters.

[26]  Majid Safari,et al.  Capacity Analysis of Signaling on the Continuous Spectrum of Nonlinear Optical Fibers , 2017, Journal of Lightwave Technology.

[27]  Vahid Aref,et al.  Statistics of the Nonlinear Discrete Spectrum of a Noisy Pulse , 2019, Journal of Lightwave Technology.

[28]  S. Turitsyn,et al.  Nonlinear Fourier Transform for Analysis of Coherent Structures in Dissipative Systems. , 2019, Physical review letters.