Fine mapping of two major QTLs conferring resistance to powdery mildew in tomato

[1]  John W. Scott,et al.  Characterization of polygenic resistance to powdery mildew in tomato at cytological, biochemical and gene expression level. , 2012, Molecular plant pathology.

[2]  M. Grant,et al.  Genetic dissection of basal resistance to Pseudomonas syringae pv. phaseolicola in accessions of Arabidopsis. , 2010, Molecular plant-microbe interactions : MPMI.

[3]  D. S. St. Clair,et al.  Quantitative disease resistance and quantitative resistance Loci in breeding. , 2010, Annual review of phytopathology.

[4]  Norikuni Saka,et al.  Loss of Function of a Proline-Containing Protein Confers Durable Disease Resistance in Rice , 2009, Science.

[5]  Detlef Weigel,et al.  SHOREmap: simultaneous mapping and mutation identification by deep sequencing , 2009, Nature Methods.

[6]  J. Dubcovsky,et al.  A Kinase-START Gene Confers Temperature-Dependent Resistance to Wheat Stripe Rust , 2009, Science.

[7]  B. Keller,et al.  A Putative ABC Transporter Confers Durable Resistance to Multiple Fungal Pathogens in Wheat , 2009, Science.

[8]  R. Nelson,et al.  Shades of gray: the world of quantitative disease resistance. , 2009, Trends in plant science.

[9]  Hamid Ashrafi,et al.  A Solanum lycopersicum × Solanum pimpinellifolium Linkage Map of Tomato Displaying Genomic Locations of R-Genes, RGAs, and Candidate Resistance/Defense-Response ESTs , 2009, International journal of plant genomics.

[10]  H. Ashrafi,et al.  Genetics, Genomics and Breeding of Late Blight and Early Blight Resistance in Tomato , 2008 .

[11]  R. Visser,et al.  The R(Pi-mcd1) locus from Solanum microdontum involved in resistance to Phytophthora infestans, causing a delay in infection, maps on potato chromosome 4 in a cluster of NBS-LRR genes. , 2008, Molecular plant-microbe interactions : MPMI.

[12]  G. Kovács,et al.  Oidium neolycopersici: intraspecific variability inferred from amplified fragment length polymorphism analysis and relationship with closely related powdery mildew fungi infecting various plant species. , 2008, Phytopathology.

[13]  R. Visser,et al.  Naturally occurring broad-spectrum powdery mildew resistance in a Central American tomato accession is caused by loss of mlo function. , 2008, Molecular plant-microbe interactions : MPMI.

[14]  Z. Lippman,et al.  An integrated view of quantitative trait variation using tomato interspecific introgression lines. , 2007, Current opinion in genetics & development.

[15]  Yuling Bai,et al.  Domestication and Breeding of Tomatoes: What have We Gained and What Can We Gain in the Future? , 2007, Annals of botany.

[16]  R. Visser,et al.  Biochemical and molecular mechanisms involved in monogenic resistance responses to tomato powdery mildew. , 2007, Molecular plant-microbe interactions : MPMI.

[17]  J. Pickett,et al.  Plant defence signalling induced by biotic attacks. , 2007, Current opinion in plant biology.

[18]  Jonathan D. G. Jones,et al.  Pathological hormone imbalances. , 2007, Current opinion in plant biology.

[19]  Jonathan D. G. Jones,et al.  The plant immune system , 2006, Nature.

[20]  M. Albrecht,et al.  Resistance proteins: molecular switches of plant defence. , 2006, Current opinion in plant biology.

[21]  A. Price,et al.  Believe it or not, QTLs are accurate! , 2006, Trends in plant science.

[22]  R. Wu,et al.  Functional mapping — how to map and study the genetic architecture of dynamic complex traits , 2006, Nature Reviews Genetics.

[23]  S. Chisholm,et al.  Host-Microbe Interactions: Shaping the Evolution of the Plant Immune Response , 2022 .

[24]  J. Ooijen,et al.  JoinMap® 4, Software for the calculation of genetic linkage maps in experimental populations , 2006 .

[25]  M. Koornneef,et al.  QTL analysis. , 2006, Methods in molecular biology.

[26]  J. Zethof,et al.  Quantitative Trait Locus (QTL) Isogenic Recombinant Analysis: A Method for High-Resolution Mapping of QTL Within a Single Population , 2005, Genetics.

[27]  Yuling Bai,et al.  Tomato defense to Oidium neolycopersici: dominant Ol genes confer isolate-dependent resistance via a different mechanism than recessive ol-2. , 2005, Molecular plant-microbe interactions : MPMI.

[28]  D. Zamir,et al.  Unused Natural Variation Can Lift Yield Barriers in Plant Breeding , 2004, PLoS biology.

[29]  D. S. St. Clair,et al.  QTL analysis of quantitative resistance to Phytophthora infestans (late blight) in tomato and comparisons with potato. , 2004, Genome.

[30]  R. Kennedy,et al.  Variation in Oidium neolycopersici development on host and non-host plant species and their tissue defence responses , 2004 .

[31]  E. Kochieva,et al.  Efficient targeting of plant disease resistance loci using NBS profiling , 2004, Theoretical and Applied Genetics.

[32]  J. V. Ooijen,et al.  Software for the mapping of quantitative trait loci in experimental populations , 2004 .

[33]  E. Nevo,et al.  High-resolution mapping of quantitative trait loci by selective recombinant genotyping. , 2003, Genetics.

[34]  P. Ronald,et al.  A catalytically impaired mutant of the rice Xa21 receptor kinase confers partial resistance to Xanthomonas oryzae pv oryzae , 2003 .

[35]  Yuling Bai,et al.  QTLs for tomato powdery mildew resistance (Oidium lycopersici) in Lycopersicon parviflorum G1.1601 co-localize with two qualitative powdery mildew resistance genes. , 2003, Molecular plant-microbe interactions : MPMI.

[36]  S. Tanksley,et al.  A new class of regulatory genes underlying the cause of pear-shaped tomato fruit , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[37]  Hui Liu,et al.  Functional replacement of the tobacco rattle virus cysteine-rich protein by pathogenicity proteins from unrelated plant viruses. , 2002, Virology.

[38]  M. Foolad,et al.  A molecular linkage map of tomato displaying chromosomal locations of resistance gene analogs based on a Lycopersicon esculentum x Lycopersicon hirsutum cross. , 2002, Genome.

[39]  J. Valkonen,et al.  Organization of genes controlling disease resistance in the potato genome. , 2001, Annual review of phytopathology.

[40]  T. C. Nesbitt,et al.  fw2.2: a quantitative trait locus key to the evolution of tomato fruit size. , 2000, Science.

[41]  E. Radwanski,et al.  Comparative genetics of disease resistance within the solanaceae. , 2000, Genetics.

[42]  P. Thoquet,et al.  Inheritance of partial resistance against Colletotrichum lindemuthianum in Phaseolus vulgaris and co-localization of quantitative trait loci with genes involved in specific resistance. , 2000, Molecular plant-microbe interactions : MPMI.

[43]  L. Rieseberg,et al.  Transgressive segregation, adaptation and speciation , 1999, Heredity.

[44]  J. Mes,et al.  Dissection of the Fusarium I2 Gene Cluster in Tomato Reveals Six Homologs and One Active Gene Copy , 1998, Plant Cell.

[45]  Jonathan D. G. Jones,et al.  Novel Disease Resistance Specificities Result from Sequence Exchange between Tandemly Repeated Genes at the Cf-4/9 Locus of Tomato , 1997, Cell.

[46]  S. Doğanlar,et al.  High-resolution genetic map of the Lv resistance locus in tomato , 1997, Theoretical and Applied Genetics.

[47]  M. Soller,et al.  Advanced intercross lines, an experimental population for fine genetic mapping. , 1995, Genetics.

[48]  M. Soller,et al.  Detecting marker-QTL linkage and estimating QTL gene effect and map location using a saturated genetic map. , 1993, Genetics.

[49]  E. Lander,et al.  Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. , 1989, Genetics.