An Approach to a Learning Prediction Model for Recognition of Daily Life Pattern based on Event Calculus

기계 학습 알고리즘의 발전에 따라 다양한 영역의 데이터에 대한 분석 및 결과를 예측하는 연구들이 진행되고 있다. 그러나 기존의 데이터 의존적인 기계 학습 기반의 의도 인지 방법론은 노이즈 처리에 대한 어려움이 존재하고, 복합적으로 발생할 수 있는 행위 의도에 대한 인지에서 한계점을 가진다. 본 한계점을 극복하기 위해 본 논문에서는 이벤트 연산(Event Calculus)을 기반으로 3단계의 행위 의도인지 방법론을 제안한다. 첫 번째 단계는 시퀀스 데이터가 어떤 의도인지를 판별하는 의도 추론 단계이다. 두 번째 단계는 새롭게 추론된 행위 의도를 기반으로 이전부터 유지됐던 행위 의도와의 병행 가능 여부를 판단하는 충돌 해결(Conflict Resolution) 단계이다. 마지막으로 많은 노이즈로 인해 발생되는 오류를 추론된 행위 의도들에 반영하는 노이즈 감소(Noise Reduction) 단계로 진행된다. 이벤트 연산 기법에 대한 성능 평가를 위해 실제 수집한 데이터를 재구축한 혼합 가우시안 모델과 휴리스틱 규칙 기반의 범용 데이터 생성 기법을 제안한다. 5개의 의도로 이루어진 약 13시간의 시퀀스 데이터 300개를 사용하여 이벤트 연산의 성능을 측정하였고, 각 의도에 대해 이벤트 연산의 예측 결과와 실제 확률 모델이 평균 89.3%의 일치 도를 보였다.