Binary space partitions for 3D subdivisions

We consider the following question: Given a subdivision of space into <i>n</i> convex polyhedral cells, what is the worst-case complexity of a binary space partition (BSP) for the subdivision? We show that if the subdivision is rectangular and axis-aligned, then the worstcase complexity of an axis-aligned BSP is Ω(<i>n</i><sup>4/3</sup>) and <i>O</i>(<i>n</i><sup>α</sup> log<sup>2</sup> <i>n</i>), where α = 1 + log<inf>2</inf>(4/3 ) = 1.4150375 .... By contrast, it is known that the BSP of a collection of <i>n</i> rectangular cells not forming a subdivision has worstcase complexity Θ(<i>n</i><sup>3/2</sup>). We also show that the worstcase complexity of a BSP for a general convex polyhedral subdivision of total complexity <i>O</i>(<i>n</i>) is Ω(<i>n</i><sup>3/2</sup>).

[1]  Csaba D. Tóth Binary space partitions for line segments with a limited number of directions , 2002, SODA '02.

[2]  F. Frances Yao,et al.  Efficient binary space partitions for hidden-surface removal and solid modeling , 1990, Discret. Comput. Geom..

[3]  Joseph S. B. Mitchell,et al.  Binary Space Partitions for Axis-Parallel Segments, Rectangles, and Hyperrectangles , 2004, Discret. Comput. Geom..

[4]  R. Schmacher,et al.  Study for Applying Computer-Generated Images to Visual Simulation: (510842009-001) , 1969 .

[5]  Steven K. Feiner,et al.  Fast object-precision shadow generation for area light sources using BSP trees , 1992, I3D '92.

[6]  Henry Fuchs,et al.  On visible surface generation by a priori tree structures , 1980, SIGGRAPH '80.

[7]  Bruce F. Naylor,et al.  Set operations on polyhedra using binary space partitioning trees , 1987, SIGGRAPH.

[8]  Mark de Berg,et al.  New Results on Binary Space Partitions in the Plane , 1997, Comput. Geom..

[9]  F. Frances Yao,et al.  Optimal binary space partitions for orthogonal objects , 1990, SODA '90.

[10]  Steven K. Feiner,et al.  Near real-time shadow generation using BSP trees , 1989, SIGGRAPH '89.

[11]  John Amanatides,et al.  Merging BSP trees yields polyhedral set operations , 1990, SIGGRAPH.

[12]  Bernard Chazelle,et al.  Convex Partitions of Polyhedra: A Lower Bound and Worst-Case Optimal Algorithm , 1984, SIAM J. Comput..

[13]  Piotr Berman,et al.  Slice and dice: a simple, improved approximate tiling recipe , 2002, SODA '02.

[14]  Csaba D. Tóth A Note on Binary Plane Partitions , 2001, SCG '01.

[15]  Alade O. Tokuta Motion planning using binary space partitioning , 1991, Proceedings IROS '91:IEEE/RSJ International Workshop on Intelligent Robots and Systems '91.