General notions of statistical depth function

Statistical depth functions are being formulated ad hoc with increasing popularity in nonparametric inference for multivariate data. Here we introduce several general structures for depth functions, classify many existing examples as special cases, and establish results on the possession, or lack thereof, of four key properties desirable for depth functions in general. Roughly speaking, these properties may be described as: affine invariance, maximality at center, monotonicity relative to deepest point, and vanishing at infinity. This provides a more systematic basis for selection of a depth function. In particular, from these and other considerations it is found that the halfspace depth behaves very well overall in comparison with various competitors.

[1]  H. Hotelling Stability in Competition , 1929 .

[2]  E. Chamberlin The Theory of Monopolistic Competition , 1933 .

[3]  P. Mahalanobis On the generalized distance in statistics , 1936 .

[4]  J. Doob Stochastic processes , 1953 .

[5]  L. E. Fouraker,et al.  The Theory of Monopolistic Competition , 1933 .

[6]  Frederick Mosteller,et al.  Data Analysis and Regression , 1978 .

[7]  R. Serfling Approximation Theorems of Mathematical Statistics , 1980 .

[8]  H. Oja Descriptive Statistics for Multivariate Distributions , 1983 .

[9]  Christopher G. Small Measures of centrality for multivariate and directional distributions , 1987 .

[10]  Andrew Caplin,et al.  ON 64%-MAJORITY RULE , 1988 .

[11]  H. Oja,et al.  The finite-sample breakdown point of the Oja bivariate median and of the corresponding half-samples version , 1990 .

[12]  Regina Y. Liu On a Notion of Data Depth Based on Random Simplices , 1990 .

[13]  C. Small A Survey of Multidimensional Medians , 1990 .

[14]  Andrew Caplin,et al.  Aggregation and Social Choice: A Mean Voter Theorem , 1991 .

[15]  Andrew Caplin,et al.  Aggregation and Imperfect Competition: On the Existence of Equilibrium , 1991 .

[16]  D. Nolan Asymptotics for multivariate trimming , 1992 .

[17]  L. Dümbgen Limit theorems for the simplicial depth , 1992 .

[18]  D. Donoho,et al.  Breakdown Properties of Location Estimates Based on Halfspace Depth and Projected Outlyingness , 1992 .

[19]  Regina Y. Liu,et al.  A Quality Index Based on Data Depth and Multivariate Rank Tests , 1993 .

[20]  E. Giné,et al.  Limit Theorems for $U$-Processes , 1993 .

[21]  David E. Tyler Finite Sample Breakdown Points of Projection Based Multivariate Location and Scatter Statistics , 1994 .

[22]  R. Theodorescu,et al.  Halfplane trimming for bivariate distributions , 1994 .

[23]  Z. Q. Chen,et al.  Bounds for the Breakdown Point of the Simplicial Median , 1995 .

[24]  P. Rousseeuw,et al.  Bivariate location depth , 1996 .

[25]  E. Carrizosa A Characterization of Halfspace Depth , 1996 .

[26]  P. Rousseeuw,et al.  Computing depth contours of bivariate point clouds , 1996 .

[27]  Robert Bartoszyński,et al.  A Multidimensional Goodness-of-Fit Test Based on Interpoint Distances , 1997 .

[28]  K. Mosler,et al.  Zonoid trimming for multivariate distributions , 1997 .

[29]  G. Wang,et al.  Convergence of depth contours for multivariate datasets , 1997 .

[30]  Jean Meloche,et al.  Multivariate density estimation by probing depth , 1997 .

[31]  A. B. Yeh,et al.  Balanced Confidence Regions Based on Tukey’s Depth and the Bootstrap , 1997 .

[32]  R. Beran,et al.  Multivariate Symmetry Models , 1997 .

[33]  Peter Rousseeuw,et al.  Computing location depth and regression depth in higher dimensions , 1998, Stat. Comput..

[34]  Yijun Zuo,et al.  On the Performance of Some Robust Nonparametric Location Measures Relative to a General Notion of Mu , 2000 .

[35]  Regina Y. Liu,et al.  Multivariate analysis by data depth: descriptive statistics, graphics and inference, (with discussion and a rejoinder by Liu and Singh) , 1999 .

[36]  Jean Meloche,et al.  Multivariate L-estimation , 1999 .

[37]  Regina Y. Liu,et al.  Regression depth. Commentaries. Rejoinder , 1999 .

[38]  Yijun Zuo,et al.  Nonparametric Notions of Multivariate “Scatter Measure” and “More Scattered” Based on Statistical Depth Functions , 2000 .

[39]  Structural properties and convergence results for contours of sample statistical depth functions , 2000 .

[40]  Cun-Hui Zhang,et al.  The multivariate L1-median and associated data depth. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[41]  I. Mizera On depth and deep points: a calculus , 2002 .