Subalgebras, Intervals, and Central Elements of Generalized Effect Algebras
暂无分享,去创建一个
[1] G. Kalmbach,et al. AN AXIOMATIZATION FOR ABELIAN RELATIVE INVERSES , 1994 .
[2] Roberto Giuntini. Quantum MV algebras , 1996, Stud Logica.
[3] Ladislav Beran,et al. Orthomodular Lattices: Algebraic Approach , 1985 .
[4] A. Dvurecenskij,et al. Tensor products of D-posets and D-test spaces , 1994 .
[5] R. J. Greechie,et al. The center of an effect algebra , 1995 .
[6] Zdenka Riečanová,et al. Contraexamples in difference posets and orthoalgebras , 1994 .
[7] D. Foulis,et al. Effect algebras and unsharp quantum logics , 1994 .
[8] A. Dvurecenskij. Tensor product of difference posets and effect algebras , 1995 .
[9] Roberto Giuntini,et al. Toward a formal language for unsharp properties , 1989 .
[10] S. Pulmannová,et al. Generalized difference posets and orthoalgebras. , 1996 .
[11] Sylvia Pulmannová,et al. Orthomodular structures as quantum logics , 1991 .
[12] A. Dvurecenskij,et al. Difference posets, effects, and quantum measurements , 1994 .