An asymmetric dimer as the basic subunit in Alzheimer's disease amyloid β fibrils.

[1]  Carlo Camilloni,et al.  Determination of secondary structure populations in disordered states of proteins using nuclear magnetic resonance chemical shifts. , 2012, Biochemistry.

[2]  I. Bertini,et al.  A new structural model of Aβ40 fibrils. , 2011, Journal of the American Chemical Society.

[3]  R. Griffin,et al.  Structural complexity of a composite amyloid fibril. , 2011, Journal of the American Chemical Society.

[4]  Uwe Fink,et al.  Proton-detected solid-state NMR spectroscopy of fibrillar and membrane proteins. , 2011, Angewandte Chemie.

[5]  B. Reif,et al.  Festkörper‐NMR‐Spektroskopie mit Protonendetektion an fibrillären Proteinen und Membranproteinen , 2011 .

[6]  A. D. de Brevern,et al.  Assignment of PolyProline II Conformation and Analysis of Sequence – Structure Relationship , 2011, PloS one.

[7]  U. Fink,et al.  Structure calculation from unambiguous long-range amide and methyl 1H-1H distance restraints for a microcrystalline protein with MAS solid-state NMR spectroscopy. , 2011, Journal of the American Chemical Society.

[8]  R. Tycko,et al.  Structural evolution of Iowa mutant β-amyloid fibrils from polymorphic to homogeneous states under repeated seeded growth. , 2011, Journal of the American Chemical Society.

[9]  U. Fink,et al.  Bacterial Inclusion Bodies of Alzheimer's Disease β‐Amyloid Peptides Can Be Employed To Study Native‐Like Aggregation Intermediate States , 2011, Chembiochem : a European journal of chemical biology.

[10]  P. Schmieder,et al.  High resolution 1H-detected solid-state NMR spectroscopy of protein aliphatic resonances: access to tertiary structure information. , 2010, Journal of the American Chemical Society.

[11]  S. Becker,et al.  Supramolecular interactions probed by 13C-13C solid-state NMR spectroscopy. , 2010, Journal of the American Chemical Society.

[12]  R. Griffin,et al.  Structural characterization of GNNQQNY amyloid fibrils by magic angle spinning NMR. , 2010, Biochemistry.

[13]  Roger M. Nitsch,et al.  The recombinant amyloid-beta peptide Abeta1-42 aggregates faster and is more neurotoxic than synthetic Abeta1-42. , 2010, Journal of molecular biology.

[14]  N. Grigorieff,et al.  Comparison of Alzheimer Aβ(1–40) and Aβ(1–42) amyloid fibrils reveals similar protofilament structures , 2009, Proceedings of the National Academy of Sciences.

[15]  N. Grigorieff,et al.  Structural polymorphism of Alzheimer Aβ and other amyloid fibrils , 2009, Prion.

[16]  D. Otzen,et al.  Unique identification of supramolecular structures in amyloid fibrils by solid-state NMR spectroscopy. , 2009, Angewandte Chemie.

[17]  N. Grigorieff,et al.  Abeta(1-40) fibril polymorphism implies diverse interaction patterns in amyloid fibrils. , 2009, Journal of molecular biology.

[18]  Richard D. Leapman,et al.  Molecular structural basis for polymorphism in Alzheimer's β-amyloid fibrils , 2008, Proceedings of the National Academy of Sciences.

[19]  S. Radford,et al.  Structural insights into the polymorphism of amyloid-like fibrils formed by region 20-29 of amylin revealed by solid-state NMR and X-ray fiber diffraction. , 2008, Journal of the American Chemical Society.

[20]  B. Meier,et al.  Polymorphism in an amyloid-like fibril-forming model peptide. , 2008, Angewandte Chemie.

[21]  Beat H. Meier,et al.  Polymorphie in einem amyloidartige Fibrillen bildenden Modellpeptid , 2008 .

[22]  N. Grigorieff,et al.  Paired β-sheet structure of an Aβ(1-40) amyloid fibril revealed by electron microscopy , 2008, Proceedings of the National Academy of Sciences.

[23]  D. Otzen,et al.  Amyloid—a state in many guises: Survival of the fittest fibril fold , 2007, Protein science : a publication of the Protein Society.

[24]  Heather T. McFarlane,et al.  Atomic structures of amyloid cross-β spines reveal varied steric zippers , 2007, Nature.

[25]  R. Griffin,et al.  Solid-state NMR study of amyloid nanocrystals and fibrils formed by the peptide GNNQQNY from yeast prion protein Sup35p. , 2007, Journal of the American Chemical Society.

[26]  D. Walsh,et al.  Exogenous Induction of Cerebral ß-Amyloidogenesis Is Governed by Agent and Host , 2006, Science.

[27]  Christopher M Dobson,et al.  Spatial persistence of angular correlations in amyloid fibrils. , 2006, Physical review letters.

[28]  R. Tycko,et al.  Experimental constraints on quaternary structure in Alzheimer's beta-amyloid fibrils. , 2006, Biochemistry.

[29]  R. Riek,et al.  3D structure of Alzheimer's amyloid-β(1–42) fibrils , 2005 .

[30]  M. Mattson,et al.  Self-Propagating, Molecular-Level Polymorphism in Alzheimer's ß-Amyloid Fibrils , 2005, Science.

[31]  K. Griebenow,et al.  Aβ1-28 Fragment of the Amyloid Peptide Predominantly Adopts a Polyproline II Conformation in an Acidic Solution† , 2004 .

[32]  Gerd Buntkowsky,et al.  Solid State NMR Reveals a pH-dependent Antiparallel β-Sheet Registry in Fibrils Formed by a β-Amyloid Peptide , 2004 .

[33]  H. Nakanishi,et al.  Effect of pH on the aggregate formation of a non‐amyloid component (1–13) , 2003, Journal of peptide science : an official publication of the European Peptide Society.

[34]  M. Schubert,et al.  Structure of a protein determined by solid-state magic-angle-spinning NMR spectroscopy , 2002, Nature.

[35]  S. Robinson,et al.  The Search for an Amyloid Solution , 2002, Science.

[36]  A. Doig,et al.  Is polyproline II helix the killer conformation? A Raman optical activity study of the amyloidogenic prefibrillar intermediate of human lysozyme. , 2000, Journal of molecular biology.

[37]  U Aebi,et al.  Architecture and polymorphism of fibrillar supramolecular assemblies produced by in vitro aggregation of human calcitonin. , 1995, Journal of structural biology.

[38]  D. Wishart,et al.  The 13C Chemical-Shift Index: A simple method for the identification of protein secondary structure using 13C chemical-shift data , 1994, Journal of biomolecular NMR.

[39]  R. Leapman,et al.  A structural model for Alzheimer's beta -amyloid fibrils based on experimental constraints from solid state NMR. , 2002, Proceedings of the National Academy of Sciences of the United States of America.