Multi-client Predicate-only Encryption for Conjunctive Equality Tests

We propose the first multi-client predicate-only encryption scheme capable of efficiently testing the equality of two encrypted vectors. Our construction can be used for the privacy-preserving monitoring of relations among multiple clients. Since both the clients’ data and the predicates are encrypted, our system is suitable for situations in which this information is considered sensitive. We prove our construction plaintext and predicate private in the generic bilinear group model using random oracles, and secure under chosen-plaintext attack with unbounded corruptions under the symmetric external Diffie–Hellman assumption. Additionally, we provide a proof-of-concept implementation that is capable of evaluating one thousand predicates defined over the inputs of ten clients in less than a minute on commodity hardware.

[1]  Yannis Rouselakis,et al.  Property Preserving Symmetric Encryption , 2012, EUROCRYPT.

[2]  Nigel P. Smart,et al.  Identity-Based Encryption Gone Wild , 2006, ICALP.

[3]  Victor Shoup,et al.  Lower Bounds for Discrete Logarithms and Related Problems , 1997, EUROCRYPT.

[4]  Eric A. M. Luiijf,et al.  On the Sharing of Cyber Security Information , 2015, Critical Infrastructure Protection.

[5]  Brent Waters,et al.  Functional Encryption: Definitions and Challenges , 2011, TCC.

[6]  Kenneth G. Paterson,et al.  Pairings for Cryptographers , 2008, IACR Cryptol. ePrint Arch..

[7]  Myriam Dunn Cavelty,et al.  Public-Private Partnerships are No Silver Bullet: An Expanded Governance Model for Critical Infrastructure Protection , 2009, Int. J. Crit. Infrastructure Prot..

[8]  Stephen H. Conrad,et al.  Critical national infrastructure reliability modeling and analysis , 2006, Bell Labs Technical Journal.

[9]  Amit Sahai,et al.  Multi-Input Functional Encryption , 2014, IACR Cryptol. ePrint Arch..

[10]  David J. Wu,et al.  Order-Revealing Encryption: New Constructions, Applications, and Lower Bounds , 2016, IACR Cryptol. ePrint Arch..

[11]  Allison Bishop,et al.  Decentralizing Attribute-Based Encryption , 2011, IACR Cryptol. ePrint Arch..

[12]  Jacob T. Schwartz,et al.  Fast Probabilistic Algorithms for Verification of Polynomial Identities , 1980, J. ACM.

[13]  Nigel P. Smart The Exact Security of ECIES in the Generic Group Model , 2001, IMACC.

[14]  John D. Moteff,et al.  Critical Infrastructure Information Disclosure and Homeland Security , 2003 .

[15]  Atsuko Miyaji,et al.  Characterization of Elliptic Curve Traces under FR-Reduction , 2000, ICISC.

[16]  Elaine Shi,et al.  Privacy-Preserving Aggregation of Time-Series Data , 2011, NDSS.

[17]  Guomin Yang,et al.  Probabilistic Public Key Encryption with Equality Test , 2010, CT-RSA.

[18]  Jonathan Katz,et al.  Predicate Encryption Supporting Disjunctions, Polynomial Equations, and Inner Products , 2008, Journal of Cryptology.

[19]  Adam O'Neill,et al.  Definitional Issues in Functional Encryption , 2010, IACR Cryptol. ePrint Arch..

[20]  Matthew K. Franklin,et al.  Identity-Based Encryption from the Weil Pairing , 2001, CRYPTO.

[21]  Eric A. M. Luiijf,et al.  Empirical Findings on Critical Infrastructure Dependencies in Europe , 2009, CRITIS.

[22]  Florian Skopik,et al.  A problem shared is a problem halved: A survey on the dimensions of collective cyber defense through security information sharing , 2016, Comput. Secur..

[23]  Melissa Chase,et al.  Algebraic MACs and Keyed-Verification Anonymous Credentials , 2014, CCS.

[24]  David J. Wu,et al.  Practical Order-Revealing Encryption with Limited Leakage , 2016, FSE.

[25]  Hoeteck Wee,et al.  Multi-input Inner-Product Functional Encryption from Pairings , 2017, EUROCRYPT.

[26]  Zvika Brakerski,et al.  Function-Private Functional Encryption in the Private-Key Setting , 2015, TCC.

[27]  Brent Waters,et al.  Fuzzy Identity-Based Encryption , 2005, EUROCRYPT.

[28]  Andreas Peter,et al.  A Survey of Provably Secure Searchable Encryption , 2014, ACM Comput. Surv..

[29]  Moni Naor,et al.  Number-theoretic constructions of efficient pseudo-random functions , 1997, Proceedings 38th Annual Symposium on Foundations of Computer Science.

[30]  Brent Waters,et al.  Conjunctive, Subset, and Range Queries on Encrypted Data , 2007, TCC.

[31]  Mark Zhandry,et al.  Semantically Secure Order-Revealing Encryption: Multi-input Functional Encryption Without Obfuscation , 2015, EUROCRYPT.

[32]  Elaine Shi,et al.  Predicate Privacy in Encryption Systems , 2009, IACR Cryptol. ePrint Arch..