Gaussian Pyramid: Comparative Analysis of Hardware Architectures

This paper addresses a comparison of architectures for the hardware implementation of Gaussian image pyramids. Main differences between architectural choices are in the sensor front-end. One side is for architectures consisting of a conventional sensor that delivers digital images and which is followed by digital processors. The other side is for architectures employing a non-conventional sensor with per-pixel embedded preprocessing structures for Gaussian spatial filtering. This later choice belongs to the general category of “artificial retina” sensors which have been for long claimed as potentially advantageous for enhancing throughput and reducing energy consumption of vision systems. These advantages are very important in the internet of things context, where imaging systems are constantly exchanging information. This paper attempts to quantify these potential advantages within a design space in which the degrees of freedom are the number and type of ADCs, single-slope, SAR, cyclic, $\Sigma \Delta$ , and pipeline, and the number of digital processors. Results show that speed and energy advantages of preprocessing sensors are not granted by default and are only realized through proper architectural design. The methodology presented for the comparison between focal-plane and digital approaches is a useful tool for imager design, allowing for the assessment of focal-plane processing advantages.

[1]  Abbas El Gamal,et al.  CMOS Image Sensor With Per-Column ΣΔ ADC and Programmable Compressed Sensing , 2013, IEEE Journal of Solid-State Circuits.

[2]  Robert H. Walden,et al.  Analog-to-digital converter survey and analysis , 1999, IEEE J. Sel. Areas Commun..

[3]  M. Furuta,et al.  A High-Speed, High-Sensitivity Digital CMOS Image Sensor With a Global Shutter and 12-bit Column-Parallel Cyclic A/D Converters , 2007, IEEE Journal of Solid-State Circuits.

[4]  Bengt E. Jonsson An empirical approach to finding energy efficient ADC architectures , 2011 .

[5]  Oh-Kyong Kwon,et al.  A Small-Area and Energy-Efficient 12-bit SA-ADC With Residue Sampling and Digital Calibration for CMOS Image Sensors , 2015, IEEE Transactions on Circuits and Systems II: Express Briefs.

[6]  Sheng Zhang,et al.  A 12-Bit 96Msample/s double-data-rate (DDR) pipeline ADC with speed and noise optimization for CMOS image sensors , 2014, 2014 International Conference on Information Science, Electronics and Electrical Engineering.

[7]  Minho Kwon,et al.  A 240-frames/s 2.1-Mpixel CMOS Image Sensor With Column-Shared Cyclic ADCs , 2011, IEEE Journal of Solid-State Circuits.

[8]  Ákos Zarándy,et al.  Focal-Plane Sensor-Processor Chips , 2014 .

[9]  Jiangtao Xu,et al.  A 12-Bit High-Speed Column-Parallel Two-Step Single-Slope Analog-to-Digital Converter (ADC) for CMOS Image Sensors , 2014, Sensors.

[10]  H. Ohtake,et al.  A 33-Megapixel 120-Frames-Per-Second 2.5-Watt CMOS Image Sensor With Column-Parallel Two-Stage Cyclic Analog-to-Digital Converters , 2012, IEEE Transactions on Electron Devices.

[11]  M.F. Snoeij,et al.  Multiple-Ramp Column-Parallel ADC Architectures for CMOS Image Sensors , 2007, IEEE Journal of Solid-State Circuits.

[12]  Chih-Cheng Hsieh,et al.  An 8-bit column-shared SAR ADC for CMOS image sensor applications , 2015, 2015 IEEE International Symposium on Circuits and Systems (ISCAS).

[13]  J. L. White,et al.  An active resistor network for Gaussian filtering of images , 1991 .

[14]  Xinqiao Liu,et al.  A 10000 frames/s CMOS digital pixel sensor , 2001, IEEE J. Solid State Circuits.

[15]  Ricardo Carmona-Galán,et al.  FLIP-Q: A QCIF Resolution Focal-Plane Array for Low-Power Image Processing , 2011, IEEE Journal of Solid-State Circuits.

[16]  B. Rajan FPGA Based Hardware Implementation of Image Filter With Dynamic Reconfiguration Architecture , 2006 .

[17]  T. Delbruck,et al.  > Replace This Line with Your Paper Identification Number (double-click Here to Edit) < 1 , 2022 .

[18]  A. Suzuki,et al.  High-Speed Digital Double Sampling with Analog CDS on Column Parallel ADC Architecture for Low-Noise Active Pixel Sensor , 2006, 2006 IEEE International Solid State Circuits Conference - Digest of Technical Papers.

[19]  Hui Zhang,et al.  A Multiwindow Partial Buffering Scheme for FPGA-Based 2-D Convolvers , 2007, IEEE Transactions on Circuits and Systems II: Express Briefs.

[20]  Mohsen Guizani,et al.  Internet of Things: A Survey on Enabling Technologies, Protocols, and Applications , 2015, IEEE Communications Surveys & Tutorials.

[21]  Francis J. Devos,et al.  Yet another analog 2D Gaussian convolver , 1993, 1993 IEEE International Symposium on Circuits and Systems.

[22]  Woo-Jin Jang,et al.  A 10b 50MS/s 90nm CMOS skinny-shape ADC using variable references for CIS applications , 2013, 2013 International SoC Design Conference (ISOCC).

[23]  Boris Murmann,et al.  Trends in Low-Power, Digitally Assisted A/D Conversion , 2010, IEICE Trans. Electron..

[24]  George Jie Yuan,et al.  A 1/2.5 inch VGA 400 fps CMOS Image Sensor With High Sensitivity for Machine Vision , 2014, IEEE Journal of Solid-State Circuits.

[25]  Donald B. Hondongwa,et al.  A Review of the Pinned Photodiode for CCD and CMOS Image Sensors , 2014, IEEE Journal of the Electron Devices Society.

[26]  Ángel Benito Rodríguez Vázquez,et al.  In the quest of vision-sensors-on-chip: Pre-processing sensors for data reduction , 2017 .

[27]  Ran Ginosar,et al.  A Wide Dynamic Range CMOS Image Sensor , 2007 .

[28]  Ray Fontaine The State-ofthe-Art of Mainstream CMOS Image Sensors , 2015 .

[29]  Gary J. Sullivan,et al.  Overview of the High Efficiency Video Coding (HEVC) Standard , 2012, IEEE Transactions on Circuits and Systems for Video Technology.

[30]  Marcel J. M. Pelgrom,et al.  Analog-to-Digital Conversion , 2016 .

[31]  Amine Bermak,et al.  A 64 fJ/step 9-bit SAR ADC Array With Forward Error Correction and Mixed-Signal CDS for CMOS Image Sensors , 2014, IEEE Transactions on Circuits and Systems I: Regular Papers.

[32]  Georges G. E. Gielen,et al.  A Low-Noise High-Frame-Rate 1-D Decoding Readout Architecture for Stacked Image Sensors , 2014, IEEE Sensors Journal.

[33]  Qiyin Fang,et al.  CMOS Image Sensors for High Speed Applications , 2009, Sensors.

[34]  Ronald C. Petersen,et al.  Conversion , 2006, Neurology.

[35]  Yaowu Mo,et al.  8.9-Megapixel Video Image Sensor With 14-b Column-Parallel SA-ADC , 2009, IEEE Transactions on Electron Devices.

[36]  Ricardo Carmona-Galán,et al.  Focal-Plane Scale Space Generation with a 6T Pixel Architecture , 2016 .

[37]  Tobi Delbrück,et al.  A 128$\times$ 128 120 dB 15 $\mu$s Latency Asynchronous Temporal Contrast Vision Sensor , 2008, IEEE Journal of Solid-State Circuits.

[38]  Georges G. E. Gielen,et al.  A column-and-row-parallel CMOS image sensor with thermal and 1/f noise suppression techniques , 2016, ESSCIRC Conference 2016: 42nd European Solid-State Circuits Conference.

[39]  Tatsuya Ichikawa,et al.  A 17.7Mpixel 120fps CMOS image sensor with 34.8Gb/s readout , 2011, 2011 IEEE International Solid-State Circuits Conference.

[40]  Jong-Ho Park,et al.  Delta readout scheme for image-dependent power savings in a CMOS image sensor with multi-column-parallel SAR ADCs , 2015, 2015 IEEE Asian Solid-State Circuits Conference (A-SSCC).

[41]  Youngcheol Chae,et al.  A Two-Step A/D Conversion and Column Self-Calibration Technique for Low Noise CMOS Image Sensors , 2014, Sensors.

[42]  Chen Xu,et al.  A 1/2.5 inch 8.1Mpixel CMOS Image Sensor for Digital Cameras , 2007, 2007 IEEE International Solid-State Circuits Conference. Digest of Technical Papers.

[43]  Rafael C. González,et al.  Local Determination of a Moving Contrast Edge , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[44]  Victor M. Brea,et al.  CMOS-3D Smart Imager Architectures for Feature Detection , 2012, IEEE Journal on Emerging and Selected Topics in Circuits and Systems.

[45]  James Campbell Cae,et al.  Using an Embedded Vision Processor to Build an Efficient Object Recognition System , 2015 .

[46]  Orly Yadid-Pecht,et al.  Very Sensitive Low-Noise Active-Reset CMOS Image Sensor With In-Pixel ADC , 2016, IEEE Transactions on Circuits and Systems II: Express Briefs.

[47]  Oh-Kyong Kwon,et al.  A 1.92-Megapixel CMOS Image Sensor With Column-Parallel Low-Power and Area-Efficient SA-ADCs , 2012, IEEE Transactions on Electron Devices.

[48]  Matthijs C. Dorst Distinctive Image Features from Scale-Invariant Keypoints , 2011 .

[49]  T. Lindeberg,et al.  Scale-Space Theory : A Basic Tool for Analysing Structures at Different Scales , 1994 .

[50]  Amine Bermak,et al.  A Low-Power Pilot-DAC Based Column Parallel 8b SAR ADC With Forward Error Correction for CMOS Image Sensors , 2013, IEEE Transactions on Circuits and Systems I: Regular Papers.

[51]  Mitsumasa Koyanagi,et al.  A very low area ADC for 3-D stacked CMOS image processing system , 2012, 2011 IEEE International 3D Systems Integration Conference (3DIC), 2011 IEEE International.

[52]  Richard Szeliski,et al.  Computer Vision - Algorithms and Applications , 2011, Texts in Computer Science.

[53]  Gunhee Han,et al.  A High-Speed CMOS Image Sensor With Column-Parallel Two-Step Single-Slope ADCs , 2009 .

[54]  Jinwoo Kim,et al.  High frame rate VGA CMOS image sensor using two-step single slope ADCs , 2016, 2016 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS).

[55]  K. Isobe,et al.  A High-Speed Low-Noise CMOS Image Sensor With 13-b Column-Parallel Single-Ended Cyclic ADCs , 2009, IEEE Transactions on Electron Devices.

[56]  David G. Lowe,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004, International Journal of Computer Vision.

[57]  Kyungmin Kim,et al.  A 1.1e- temporal noise 1/3.2-inch 8Mpixel CMOS image sensor using pseudo-multiple sampling , 2010, 2010 IEEE International Solid-State Circuits Conference - (ISSCC).

[58]  Gil-Cho Ahn,et al.  12b 50 MS/s 0.18 μm CMOS ADC with highly linear input variable gain amplifier , 2010 .

[59]  Jan M. Rabaey,et al.  Low Power Design Essentials , 2009, Series on Integrated Circuits and Systems.

[60]  Edward H. Adelson,et al.  PYRAMID METHODS IN IMAGE PROCESSING. , 1984 .

[61]  Amine Bermak,et al.  A Column-Parallel Inverter-Based Cyclic ADC for CMOS Image Sensor With Capacitance and Clock Scaling , 2016, IEEE Transactions on Electron Devices.

[62]  Takuya Nakamura,et al.  An 8.3M-pixel 480fps global-shutter CMOS image sensor with gain-adaptive column ADCs and 2-on-1 stacked device structure , 2016, 2016 IEEE Symposium on VLSI Circuits (VLSI-Circuits).

[63]  Mohsen Machhout,et al.  FPGA implementation of filtered image using 2D Gaussian filter , 2016 .

[64]  Minho Kwon,et al.  A 2.1 M Pixels, 120 Frame/s CMOS Image Sensor With Column-Parallel $\Delta \Sigma$ ADC Architecture , 2011, IEEE Journal of Solid-State Circuits.

[65]  Jun-Sang Park,et al.  A 14–10 b dual-mode low-noise pipeline ADC for high-end CMOS image sensors , 2014 .