Macromolecular crowding effects on macromolecular interactions: some implications for genome structure and function.

[1]  Charles Tanford,et al.  Physical Chemistry of Macromolecules , 1961 .

[2]  A. Riggs,et al.  The lac repressor-operator interaction. 3. Kinetic studies. , 1970, Journal of molecular biology.

[3]  A. Riggs,et al.  The lac represser-operator interaction , 1970 .

[4]  T. Laurent Enzyme reactions in polymer media. , 1971, European journal of biochemistry.

[5]  A. Worcel,et al.  On the structure of the folded chromosome of Escherichia coli. , 1972, Journal of molecular biology.

[6]  Conformational transitions of polynucleotides in polymer media. , 1974, European journal of biochemistry.

[7]  S. Bourgeois,et al.  lac Repressor-operator interaction. IX. The binding of lac repressor to operators containing Oc mutations. , 1974, Journal of molecular biology.

[8]  D. Pettijohn,et al.  Prokaryotic DNA in nucleoid structure. , 1976, CRC critical reviews in biochemistry.

[9]  S. Nedospasov,et al.  Histone-like proteins in the purified Escherichia coli deoxyribonucleoprotein. , 1977, Nucleic acids research.

[10]  A. Subramanian,et al.  Specific association of two homologous DNA-binding proteins to the native 30-S ribosomal subunits of Escherichia coli. , 1978, Biochimica et biophysica acta.

[11]  W. Comper,et al.  Physiological function of connective tissue polysaccharides. , 1978, Physiological reviews.

[12]  M. Yaniv,et al.  E. coli DNA binding protein HU forms nucleosome-like structure with circular double-stranded DNA , 1979, Cell.

[13]  N. Kjeldgaard,et al.  Native Escherichia coli HU protein is a heterotypic dimer , 1979, FEBS letters.

[14]  P. Srere The infrastructure of the mitochondrial matrix , 1980 .

[15]  A. Ogston,et al.  Effect of inert polymers on protein self‐association , 1981, FEBS letters.

[16]  J. Wetmur,et al.  One hundred‐fold acceleration of DNA renaturation rates in solution , 1981, Biopolymers.

[17]  A. Minton Excluded volume as a determinant of macromolecular structure and reactivity , 1981 .

[18]  M. Barkley,et al.  Salt dependence of the kinetics of the lac repressor-operator interaction: role of nonoperator deoxyribonucleic acid in the association reaction. , 1981, Biochemistry.

[19]  K. Geider,et al.  Proteins controlling the helical structure of DNA. , 1981, Annual review of biochemistry.

[20]  P. V. von Hippel,et al.  Diffusion-driven mechanisms of protein translocation on nucleic acids. 3. The Escherichia coli lac repressor--operator interaction: kinetic measurements and conclusions. , 1981, Biochemistry.

[21]  A. Fulton,et al.  How crowded is the cytoplasm? , 1982, Cell.

[22]  B. H. Pheiffer,et al.  Polymer-stimulated ligation: enhanced blunt- or cohesive-end ligation of DNA or deoxyribooligonucleotides by T4 DNA ligase in polymer solutions. , 1983, Nucleic acids research.

[23]  K. Mizuuchi In vitro transposition of bacteriophage Mu: A biochemical approach to a novel replication reaction , 1983, Cell.

[24]  J. Lebowitz,et al.  The bacteriophage λ O and P protein initiators promote the replication of single-stranded DNA , 1984 .

[25]  R. Burgess,et al.  Kinetics and mechanism of the interaction of Escherichia coli RNA polymerase with the λPR promoter , 1984 .

[26]  A. Kornberg,et al.  Replication initiated at the origin (oriC) of the E. coli chromosome reconstituted with purified enzymes , 1984, Cell.

[27]  S. Zimmerman,et al.  Polymer-stimulated ligation: enhanced ligation of oligo- and polynucleotides by T4 RNA ligase in polymer solutions. , 1984, Nucleic acids research.

[28]  A. Kornberg,et al.  Potent catenation of supercoiled and gapped DNA circles by topoisomerase I in the presence of a hydrophilic polymer. , 1984, The Journal of biological chemistry.

[29]  S. Zimmerman,et al.  Macromolecular crowding accelerates the cohesion of DNA fragments with complementary termini. , 1985, Nucleic acids research.

[30]  P. Forterre,et al.  High positive supercoiling in vitro catalyzed by an ATP and polyethylene glycol‐stimulated topoisomerase from Sulfolobus acidocaldarius. , 1985, The EMBO journal.

[31]  K. Hayashi,et al.  Influence of monovalent cations on the activity of T4 DNA ligase in the presence of polyethylene glycol. , 1985, Nucleic acids research.

[32]  K. Hayashi,et al.  Stimulation of intermolecular ligation with E. coli DNA ligase by high concentrations of monovalent cations in polyethylene glycol solutions. , 1985, Nucleic acids research.

[33]  Roe Jh,et al.  Regulation of the kinetics of the interaction of Escherichia coli RNA polymerase with the lambda PR promoter by salt concentration. , 1985 .

[34]  P. Woolley,et al.  Excluded-volume effect of inert macromolecules on the melting of nucleic acids. , 1985, Biophysical chemistry.

[35]  T. Lindahl,et al.  Different substrate specificities of the two DNA ligases of mammalian cells. , 1986, The Journal of biological chemistry.

[36]  M. Takahashi,et al.  Thermophilic HB8 DNA ligase: effects of polyethylene glycols and polyamines on blunt-end ligation of DNA. , 1986, Journal of biochemistry.

[37]  S. Zimmerman,et al.  Stabilization of T4 polynucleotide kinase by macromolecular crowding. , 1986, Nucleic acids research.

[38]  D. Tessier,et al.  Ligation of single-stranded oligodeoxyribonucleotides by T4 RNA ligase. , 1986, Analytical biochemistry.

[39]  S. Zimmerman,et al.  T4 polynucleotide kinase: macromolecular crowding increases the efficiency of reaction at DNA termini. , 1986, Analytical biochemistry.

[40]  D. Pettijohn,et al.  Interaction of the Escherichia coli HU protein with DNA. Evidence for formation of nucleosome-like structures with altered DNA helical pitch. , 1986, Journal of molecular biology.

[41]  F. Neidhardt,et al.  Escherichia Coli and Salmonella: Typhimurium Cellular and Molecular Biology , 1987 .

[42]  M C Mossing,et al.  Variability of the intracellular ionic environment of Escherichia coli. Differences between in vitro and in vivo effects of ion concentrations on protein-DNA interactions and gene expression. , 1987, The Journal of biological chemistry.

[43]  H. Teraoka,et al.  Influence of polyethylene glycol on the ligation reaction with calf thymus DNA ligases I and II. , 1987, Journal of biochemistry.

[44]  J. W. Chase,et al.  DNA ligase from Drosophila melanogaster embryos. Substrate specificity and mechanism of action. , 1987, The Journal of biological chemistry.

[45]  S. Zimmerman,et al.  Macromolecular crowding extends the range of conditions under which DNA polymerase is functional. , 1988, Biochimica et biophysica acta.

[46]  S. Zimmerman,et al.  Effects of macromolecular crowding on the association of E. coli ribosomal particles. , 1988, Nucleic acids research.

[47]  C. Gualerzi,et al.  Proteins from the prokaryotic nucleoid Interaction of nucleic acids with the 15 kDa Escherichia coli histone‐like protein H‐NS , 1988, FEBS letters.

[48]  Jay D. Gralla,et al.  DNA dynamic flexibility and protein recognition: Differential stimulation by bacterial histone-like protein HU , 1988, Cell.

[49]  D. Pettijohn,et al.  Histone-like proteins and bacterial chromosome structure. , 1988, The Journal of biological chemistry.

[50]  L. Sherwood Human Physiology : From Cells to Systems , 1989 .

[51]  P. Hagerman,et al.  DNA ring closure mediated by protein HU. , 1989, The Journal of biological chemistry.

[52]  D. Pettijohn Bacterial Chromosome Structure , 1990 .

[53]  P. V. von Hippel,et al.  "Macromolecular crowding": thermodynamic consequences for protein-protein interactions within the T4 DNA replication complex. , 1990, The Journal of biological chemistry.

[54]  O. Berg,et al.  The influence of macromolecular crowding on thermodynamic activity: Solubility and dimerization constants for spherical and dumbbell‐shaped molecules in a hard‐sphere mixture , 1990, Biopolymers.

[55]  Molly B. Schmid,et al.  More than just “Histone-like” proteins , 1990, Cell.

[56]  E. Ohtsubo,et al.  In vitro transposition of transposon Tn3. , 1990, The Journal of biological chemistry.

[57]  P. Serwer,et al.  Effects of temperature on excluded volume-promoted cyclization and concatemerization of cohesive-ended DNA longer than 0.04 Mb. , 1991, Nucleic acids research.

[58]  G. Church,et al.  Complementary recognition in condensed DNA: accelerated DNA renaturation. , 1991, Journal of molecular biology.

[59]  M. Record,et al.  Characterization of the cytoplasm of Escherichia coli K-12 as a function of external osmolarity. Implications for protein-DNA interactions in vivo. , 1991, Journal of molecular biology.

[60]  S. Zimmerman,et al.  Estimation of macromolecule concentrations and excluded volume effects for the cytoplasm of Escherichia coli. , 1991, Journal of molecular biology.

[61]  S. Hardy,et al.  Reinvestigation of DNA ligase I in axolotl and Pleurodeles development. , 1991, Nucleic acids research.

[62]  A. Minton,et al.  Confinement as a determinant of macromolecular structure and reactivity. , 1992, Biophysical journal.

[63]  John Kuriyan,et al.  Three-dimensional structure of the β subunit of E. coli DNA polymerase III holoenzyme: A sliding DNA clamp , 1992, Cell.

[64]  S. Kowalczykowski,et al.  Enhancement of recA protein-promoted DNA strand exchange activity by volume-occupying agents. , 1992, The Journal of biological chemistry.

[65]  M. Record,et al.  In vivo thermodynamic analysis of repression with and without looping in lac constructs. Estimates of free and local lac repressor concentrations and of physical properties of a region of supercoiled plasmid DNA in vivo. , 1993, Journal of molecular biology.

[66]  A. Ishihama,et al.  Protein-protein communication within the transcription apparatus , 1993, Journal of bacteriology.

[67]  M. Salas,et al.  Multimeric complexes formed by DNA-binding proteins of low sequence specificity. , 1993, Trends in biochemical sciences.

[68]  A. Minton,et al.  Macromolecular crowding: biochemical, biophysical, and physiological consequences. , 1993, Annual review of biophysics and biomolecular structure.