Semantics of Non-Classical First Order Predicate Logics

To describe semantics of a logical system one should define notions of a model and the truth in a model. A major part of classical first order model theory can be developed within the standard semantics, while alternative types of semantics (such as sheaves, forcing, polyadic algebras) play an auxiliary role.

[1]  Richmond H. Thomason,et al.  On the strong semantical completeness of the intuitionistic predicate calculus , 1968, Journal of Symbolic Logic.

[2]  Sabine Gornemann,et al.  A Logic Stronger Than Intuitionism , 1971, J. Symb. Log..

[3]  D. Scott,et al.  Sheaves and logic , 1979 .

[4]  R. Sikorski,et al.  The mathematics of metamathematics , 1963 .

[5]  Kit Fine,et al.  An incomplete logic containing S4 , 1974 .

[6]  Gonzalo E Reyes,et al.  Théorie des modèles et faisceaux , 1978 .

[7]  Saul A. Kripke,et al.  Semantical Analysis of Intuitionistic Logic I , 1965 .

[8]  S. K. Thomason,et al.  An incompleteness theorem in modal logic , 1974 .

[9]  D. Ellerman,et al.  Sheaves of structures and generalized ultraproducts , 1974 .

[10]  J. N. Crossley,et al.  Formal Systems and Recursive Functions , 1963 .

[11]  Kit Fine Model theory for modal logic part I—The De re/de dicto distinction , 1978, J. Philos. Log..

[12]  Kurt Schütte,et al.  Vollständige Systeme modaler und intuitionistischer Logik , 1968 .

[13]  Hiroakira Ono Incompleteness of Semantics for Intermediate Predicate Logics. I:Kripke's Semantics , 1973 .

[14]  Franco Montagna,et al.  The predicate modal logic of provability , 1984, Notre Dame J. Formal Log..

[15]  Martin Gerson The Inadequacy of the Neighbourhood Semantics for Modal Logic , 1975, J. Symb. Log..

[16]  I. Moerdijk Review: A. G. Dragalin, Mathematical intuitionism. Introduction to proof theory , 1990 .

[17]  Steven K. Thomason,et al.  Semantic analysis of tense logics , 1972, Journal of Symbolic Logic.

[18]  A. G. Dragálin Mathematical Intuitionism. Introduction to Proof Theory , 1988 .