A Limiting absorption principle for high-order Schr\"odinger operators in critical spaces

In this paper, we prove a limiting absorption principle for highorder Schrödinger operators with a large class of potentials which generalize some results by A. Ionescu and W. Schlag. Two key tools we use in this paper are the Stein–Tomas theorem in Lorentz spaces and a sharp trace lemma given by S. Agmon and L. Hörmander.

[1]  Tosio Kato Growth properties of solutions of the reduced wave equation with a variable coefficient , 1959 .

[2]  Yoshimi Saito,et al.  Limiting Absorption Method and Absolute Continuity for the Schrodinger Operator (位相解析の物理数学への応用) , 1972 .

[3]  Shmuel Agmon,et al.  Spectral properties of Schrödinger operators and scattering theory , 1975 .

[4]  Shmuel Agmon,et al.  Asymptotic properties of solutions of differential equations with simple characteristics , 1976 .

[5]  T. Tao,et al.  Effective Limiting Absorption Principles, and Applications , 2011, 1105.0873.

[6]  Q. Zheng,et al.  Remarks on L p -limiting absorption principle of Schrödinger operators and applications to spectral multiplier theorems , 2016, 1607.02752.

[7]  John E. Shelton People's Republic of China , 1973 .

[8]  A. Seeger,et al.  Extensions of the Stein-Tomas theorem , 2010, 1004.4948.

[9]  Christopher D. Sogge,et al.  Uniform Sobolev inequalities and unique continuation for second order constant coefficient differential operators , 1987 .

[10]  Agmon-kato-kuroda theorems for a large class of perturbations , 2004, math/0409313.

[11]  S. Buschenhenke,et al.  Restriction theorems for the Fourier transform , 2014 .

[12]  Kristian Kirsch,et al.  Methods Of Modern Mathematical Physics , 2016 .

[13]  Carleman Estimates and Absence of Embedded Eigenvalues , 2005, math-ph/0508052.

[14]  E. Stein,et al.  Introduction to Fourier Analysis on Euclidean Spaces. , 1971 .