Microorganisms in Fermentation

[1]  N. Zdolec,et al.  Lactobacillus plantarum with Functional Properties: An Approach to Increase Safety and Shelf-Life of Fermented Foods , 2018, BioMed research international.

[2]  S. Behera,et al.  Solid state fermentation for production of microbial cellulases: Recent advances and improvement strategies. , 2016, International journal of biological macromolecules.

[3]  D. Reheul,et al.  Growing media constituents determine the microbial nitrogen conversions in organic growing media for horticulture , 2016, Microbial biotechnology.

[4]  L. A. Prado Barragán,et al.  Fermentative Production Methods , 2016 .

[5]  S. Thakur,et al.  Solid State Fermentation of Overheated Soybean Meal (Waste) For Production of Protease Using Aspergillus Oryzae , 2015 .

[6]  R. Ray,et al.  Microorganisms and Fermentation of Traditional Foods , 2014 .

[7]  Z. Zakaria,et al.  Growth Kinetic of Fresh and Frezee-Dried Pleurotus sajor-caju (Oyster Mushroom) Mycelium for Preservation Study , 2013 .

[8]  L. Fischer,et al.  Recombinant production of hyperthermostable CelB from Pyrococcus furiosus in Lactobacillus sp. , 2012, Applied Microbiology and Biotechnology.

[9]  Bashir Sajo Mienda,et al.  Review Article Microbiological Features of Solid State Fermentation and its Applications - An overview , 2011 .

[10]  G. Caetano-Anollés,et al.  Evolution of vacuolar proton pyrophosphatase domains and volutin granules: clues into the early evolutionary origin of the acidocalcisome , 2011, Biology Direct.

[11]  I. Sengun,et al.  Importance of acetic acid bacteria in food industry , 2011 .

[12]  D. Schrenk,et al.  Update of the toxicological assessment of furanocoumarins in foodstuffs (Update of the SKLM statement of 23/24 September 2004)--Opinion of the Senate Commission on Food Safety (SKLM) of the German Research Foundation (DFG). , 2011, Molecular nutrition & food research.

[13]  W. Hammes,et al.  Microbial food cultures--opinion of the Senate Commission on Food Safety (SKLM) of the German Research Foundation (DFG). , 2011, Molecular nutrition & food research.

[14]  R. Ray,et al.  PURIFICATION, CHARACTERIZATION AND APPLICATION OF THERMOSTABLE EXO‐POLYGALACTURONASE FROM STREPTOMYCES ERUMPENS MTCC 7317 , 2011 .

[15]  T. Datta,et al.  Optimization of thermostable α- amylase production by Streptomyces erumpens MTCC 7317 in solid-state fermentation using cassava fibrous residue , 2010 .

[16]  M. Santer Joseph Lister: first use of a bacterium as a ‘model organism’ to illustrate the cause of infectious disease of humans , 2010, Notes and Records of the Royal Society.

[17]  M. Nishimoto,et al.  Distribution of In Vitro Fermentation Ability of Lacto-N-Biose I, a Major Building Block of Human Milk Oligosaccharides, in Bifidobacterial Strains , 2009, Applied and Environmental Microbiology.

[18]  M. Britten,et al.  Fat-free yogurt made using a galactose-positive exopolysaccharide-producing recombinant strain of Streptococcus thermophilus. , 2009, Journal of dairy science.

[19]  A. Pandey,et al.  Current developments in solid-state fermentation , 2014 .

[20]  M. Sauer,et al.  Microbial production of organic acids: expanding the markets. , 2008, Trends in biotechnology.

[21]  R. Ray,et al.  Partial characterization and optimization of extracellular thermostable Ca2+ inhibited α-amylase production by Streptomyces erumpens MTCC 7317 , 2008 .

[22]  R. Ray,et al.  Alpha-amylase production by Streptomyces erumpens MTCC 7317 in solid state fermentation using response surface methodology (RSM). , 2008, Polish journal of microbiology.

[23]  Daslav Hranueli,et al.  Genetics of Streptomyces rimosus, the Oxytetracycline Producer , 2006, Microbiology and Molecular Biology Reviews.

[24]  J. P. Sharma,et al.  Bioreactor studies on the endophytic fungus Entrophospora infrequens for the production of an anticancer alkaloid camptothecin. , 2006, Canadian journal of microbiology.

[25]  A. Perdih,et al.  Comparison of different methods for protein determination inAspergillus niger mycelium , 1986, Applied Microbiology and Biotechnology.

[26]  G. Strobel,et al.  Taxol from fungal endophytes and the issue of biodiversity , 1996, Journal of Industrial Microbiology.

[27]  S. Ōmura,et al.  The life and times of ivermectin — a success story , 2004, Nature Reviews Microbiology.

[28]  Hussein Znad,et al.  Production of gluconic acid from glucose by Aspergillus niger: growth and non-growth conditions , 2004 .

[29]  H. Gest The discovery of microorganisms by Robert Hooke and Antoni van Leeuwenhoek, Fellows of The Royal Society , 2004, Notes and Records of the Royal Society of London.

[30]  J. Visser,et al.  Regulation of 6-phosphofructo-2-kinase from the citric-acid-accumulating fungus Aspergillus niger , 1992, Applied Microbiology and Biotechnology.

[31]  C. Vergoignan,et al.  Biomass estimation in solid state fermentation I. Manual biochemical methods , 1991, Applied Microbiology and Biotechnology.

[32]  J. Prajapati,et al.  The History of Fermented Foods , 2003 .

[33]  Jung-Kul Lee,et al.  Controlling Substrate Concentration in Fed‐Batch Candida magnoliae Culture Increases Mannitol Production , 2003, Biotechnology progress.

[34]  U. Deppenmeier,et al.  Biochemistry and biotechnological applications of Gluconobacter strains , 2002, Applied Microbiology and Biotechnology.

[35]  C. Wandrey,et al.  Citric acid production by Candida strains under intracellular nitrogen limitation , 2002, Applied Microbiology and Biotechnology.

[36]  Mohammad J. Taherzadeh,et al.  Strategies for enhancing fermentative production of glycerol—a review , 2002 .

[37]  E. Johansen,et al.  Recombinant Lactococcus starters as a potential source of additional peptidolytic activity in cheese ripening , 2002, Journal of applied microbiology.

[38]  A. Burkovski,et al.  Bacterial amino acid transport proteins: occurrence, functions, and significance for biotechnological applications , 2002, Applied Microbiology and Biotechnology.

[39]  K. Vorlop,et al.  Biotechnological production of itaconic acid , 2001, Applied Microbiology and Biotechnology.

[40]  Zhengxiang Wang,et al.  Glycerol production by microbial fermentation: a review. , 2001, Biotechnology advances.

[41]  J. Zeikus,et al.  Biotechnology of succinic acid production and markets for derived industrial products , 1999, Applied Microbiology and Biotechnology.

[42]  A. Pilosof,et al.  Biomass estimation in solid state fermentation by modeling dry matter weight loss , 1999 .

[43]  William Wiley Navarre,et al.  Surface Proteins of Gram-Positive Bacteria and Mechanisms of Their Targeting to the Cell Wall Envelope , 1999, Microbiology and Molecular Biology Reviews.

[44]  W. Holzapfel Use of starter cultures in fermentation on a household scale , 1997 .

[45]  M. Niwa,et al.  Cloning of genes coding for L-sorbose and L-sorbosone dehydrogenases from Gluconobacter oxydans and microbial production of 2-keto-L-gulonate, a precursor of L-ascorbic acid, in a recombinant G. oxydans strain , 1997, Applied and environmental microbiology.

[46]  M. Doi,et al.  Effects of Homoserine Dehydrogenase Deficiency on Production of Cytidine by Mutants of Bacillus subtilis. , 1996, Bioscience, biotechnology, and biochemistry.

[47]  T. Satyanarayana,et al.  PRODUCTION OF BACTERIAL ENZYMES BY SOLID STATE FERMENTATION , 1996 .

[48]  A. Demain,et al.  Emerging Concepts of Secondary Metabolism in Actinomycetes , 1995 .

[49]  N. Sakurai,et al.  Further improvement of D-biotin production by a recombinant strain of Serratia marcescens , 1995 .

[50]  J. Handelsman,et al.  Zwittermicin A-producing strains of Bacillus cereus from diverse soils , 1994, Applied and environmental microbiology.

[51]  T. Beppu,et al.  Cloning of the Membrane-Bound Aldehyde Dehydrogenase Gene of Acetobacter polyoxogenes and Improvement of Acetic Acid Production by Use of the Cloned Gene , 1989, Applied and environmental microbiology.

[52]  L. Ingram,et al.  Genetic engineering of ethanol production in Escherichia coli , 1987, Applied and environmental microbiology.

[53]  M. Kikuchi,et al.  Cloning of the Bacillus Subtilis IMP Dehydrogenase Gene and its Application to Increased Production of Guanosine , 1986, Bio/Technology.

[54]  Christian P. Kubicek,et al.  Citric Acid Fermentation , 1985 .

[55]  Peter F. Stanbury,et al.  Principles of Fermentation Technology , 1984 .

[56]  S. Kinoshita,et al.  Production of Nucleic Acid-Related Substances by Fermentation Processes , 1970, Applied microbiology.

[57]  Takeo Suzuki,et al.  PRODUCTION OF NUCLEIC ACID-RELATED SUBSTANCES BY FERMENTATIVE PROCESSES. V. ACCUMULATION OF INOSINIC ACID BY AN ADENINE-AUXOTROPH OF MICROCOCCUS GLUTAMICUS , 1964 .

[58]  J. Monod The Growth of Bacterial Cultures , 1949 .

[59]  H. B. Woodruff,et al.  Actinomyces antibioticus, a New Soil Organism Antagonistic to Pathogenic and Non-pathogenic Bacteria , 1941, Journal of bacteriology.