Absorption enhancement of an amorphous Si solar cell through surface plasmon-induced scattering with metal nanoparticles.

The simulation results of absorption enhancement in an amorphous-Si (a-Si) solar cell by depositing metal nanoparticles (NPs) on the device top and embedding metal NPs in a layer above the Al back-reflector are demonstrated. The absorption increase results from the near-field constructive interference of electromagnetic waves in the forward direction such that an increased amount of sunlight energy is distributed in the a-Si absorption layer. Among the three used metals of Al, Ag, and Au, Al NPs show the most efficient absorption enhancement. Between the two used NP geometries, Al nanocylinder (NC) are more effective in absorption enhancement than Al nanosphere (NS). Also, a random distribution of isolated metal NCs can lead to higher absorption enhancement, when compared with the cases of periodical metal NC distributions. Meanwhile, the fabrication of both top and bottom Al NCs in a solar cell results in further absorption enhancement. Misalignments between the top and bottom Al NCs do not significantly reduce the enhancement percentage. With a structure of vertically aligned top and bottom Al NCs, solar cell absorption can be increased by 52%.

[1]  Y. Kiang,et al.  Fabrication of sphere-like Au nanoparticles on substrate with laser irradiation and their polarized localized surface plasmon behaviors. , 2009, Optics express.

[2]  K. Shinbo,et al.  Enhancement of optical absorption and photocurrents in solar cells of merocyanine Langmuir–Blodgett films utilizing surface plasmon excitations , 2002 .

[3]  Carsten Rockstuhl,et al.  Photon management by metallic nanodiscs in thin film solar cells , 2009 .

[4]  S. Hayashi,et al.  Enhancement of Photoelectric Conversion Efficiency in Copper Phthalocyanine Solar Cell by Surface Plasmon Excitation , 1993 .

[5]  E. Yu,et al.  Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles , 2005 .

[6]  L. Rothberg,et al.  Plasmon enhancement of bulk heterojunction organic photovoltaic devices by electrode modification , 2008 .

[7]  Daniel Derkacs,et al.  Metal and dielectric nanoparticle scattering for improved optical absorption in photovoltaic devices , 2008 .

[8]  F. Lederer,et al.  Engineering the randomness for enhanced absorption in solar cells , 2008 .

[9]  Y. Kiang,et al.  Enhancing InGaN-based solar cell efficiency through localized surface plasmon interaction by embedding Ag nanoparticles in the absorbing layer. , 2010, Optics express.

[10]  Martin A. Green,et al.  Lambertian light trapping in textured solar cells and light‐emitting diodes: analytical solutions , 2002 .

[11]  Yoon-Chae Nah,et al.  Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles , 2008 .

[12]  Thomas H. Reilly,et al.  Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics , 2008 .

[13]  M. Green,et al.  Surface plasmon enhanced silicon solar cells , 2007 .

[14]  Keiichi Yamamoto,et al.  Enhancement of Photoelectric Conversion Efficiency in Copper Phthalocyanine Solar Cell: White Light Excitation of Surface Plasmon Polaritons , 1995 .

[15]  Carsten Rockstuhl,et al.  Absorption enhancement in solar cells by localized plasmon polaritons , 2008 .

[16]  Peter Bermel,et al.  Demonstration of enhanced absorption in thin film Si solar cells with textured photonic crystal back reflector , 2008 .

[17]  Nils-Krister Persson,et al.  Surface plasmon increase absorption in polymer photovoltaic cells , 2007 .

[18]  Peter Bermel,et al.  Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals. , 2007, Optics express.

[19]  Carl Hägglund,et al.  Enhanced charge carrier generation in dye sensitized solar cells by nanoparticle plasmons , 2008 .

[20]  Peter Monk,et al.  A finite element method for approximating electromagnetic scattering from a conducting object , 2002, Numerische Mathematik.

[21]  Dieter Meissner,et al.  Metal cluster enhanced organic solar cells , 2000 .

[22]  Daniel Derkacs,et al.  Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles , 2007 .

[23]  Bloomer,et al.  Optical dispersion relations for amorphous semiconductors and amorphous dielectrics. , 1986, Physical review. B, Condensed matter.

[24]  K. Catchpole,et al.  Surface plasmons for enhanced silicon light-emitting diodes and solar cells , 2006 .

[25]  D. Staebler,et al.  Reversible conductivity changes in discharge‐produced amorphous Si , 1977 .

[26]  Volker Wittwer,et al.  Diffraction gratings and buried nano-electrodes—architectures for organic solar cells , 2004 .

[27]  Domenico Pacifici,et al.  Plasmonic nanostructure design for efficient light coupling into solar cells. , 2008, Nano letters.

[28]  A. Fejfar,et al.  Optical absorption and light scattering in microcrystalline silicon thin films and solar cells , 2000 .

[29]  C. Ballif,et al.  Plasmonic absorption in textured silver back reflectors of thin film solar cells , 2008 .

[30]  Harry A. Atwater,et al.  Plasmonic nanoparticle enhanced light absorption in GaAs solar cells , 2008 .

[31]  Carl Hägglund,et al.  Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons , 2008 .

[32]  Daniel Derkacs,et al.  Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles , 2006 .

[33]  Stephen R. Forrest,et al.  Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters , 2004 .