A discrete mechanics model for deformable bodies

This paper describes the theory and implications of a discrete mechanics model for deformable bodies, incorporating behavior such as motion, collision, deformation, etc. The model is fundamentally based on inter-atomic interaction, and recursively reduces resolution by approximating collections of many high-resolution elements with fewer lower-resolution elements. The model can be viewed as an extended mass-spring model. We begin by examining the domain of conceptual design, and find there is a need for physics based simulation, both for interactive shape modeling and analysis. We then proceed with describing a theoretical base for our model, as well as pragmatic additions. Applications in both interactive physics based shape modeling and analysis are presented. The model is aimed at conceptual mechanical design, rapid prototyping, or similar areas where adherence to physical principles, generality and simplicity are more important than metric correctness.

[1]  Hartmut Bossel,et al.  Modeling and simulation , 1994 .

[2]  Ralph Johnson,et al.  design patterns elements of reusable object oriented software , 2019 .

[3]  Xavier Provot,et al.  Deformation Constraints in a Mass-Spring Model to Describe Rigid Cloth Behavior , 1995 .

[4]  F. Grinstein,et al.  Monotonically integrated large eddy simulation of free shear flows , 1999 .

[5]  Imre Horváth SPATIAL BEHAVIOURAL SIMULATION OF MECHANICAL OBJECTS , 1998 .

[6]  J. Peraire,et al.  A posteriori finite element bounds for linear-functional outputs of elliptic partial differential equations , 1997 .

[7]  Hans-Jörg Bullinger,et al.  Virtual prototyping - State of the art in product design , 1999 .

[8]  Demetri Terzopoulos,et al.  Modeling inelastic deformation: viscolelasticity, plasticity, fracture , 1988, SIGGRAPH.

[9]  SzeliskiRichard,et al.  Surface modeling with oriented particle systems , 1992 .

[10]  Avinash C. Kak,et al.  Deforming virtual objects interactively in accordance with an elastic model , 1996, Comput. Aided Des..

[11]  Henry Fuchs,et al.  On visible surface generation by a priori tree structures , 1980, SIGGRAPH '80.

[12]  M. Giles,et al.  Adjoint methods for PDEs: a posteriori error analysis and postprocessing by duality , 2002, Acta Numerica.

[13]  John C. Platt,et al.  Elastically deformable models , 1987, SIGGRAPH.

[14]  D. Ross Computer-aided design , 1961, CACM.

[15]  Thomas Bräunl,et al.  Virtual Mechanics Simulation and Animation of Rigid Body Systems with AERO , 1995, Simul..

[16]  Rolf Rannacher,et al.  Finite Element Methods for the Incompressible Navier-Stokes Equations , 2000 .

[17]  Gerold Wesche,et al.  Towards Immersive Modeling - Challenges and Recommendations: A Workshop Analyzing the Needs of Designers , 2000, EGVE.

[18]  Imre Horváth,et al.  Requirements for highly interactive system interfaces to support conceptual design , 1999 .

[19]  Apostol Poceski,et al.  Fundamentals of the Finite Element Method , 1992 .

[20]  J. W. Humberston Classical mechanics , 1980, Nature.

[21]  P. Hunter,et al.  FEM/BEM NOTES , 2001 .

[22]  Raoul Robert,et al.  Inertial energy dissipation for weak solutions of incompressible Euler and Navier-Stokes equations , 2000 .

[23]  Meinhard E. Mayer,et al.  Navier-Stokes Equations and Turbulence , 2008 .

[24]  Serge Prudhomme,et al.  On goal-oriented error estimation for elliptic problems: application to the control of pointwise errors , 1999 .

[25]  Andrew P. Witkin,et al.  Dynamic simulation of non-penetrating flexible bodies , 1992, SIGGRAPH.

[26]  Arie E. Kaufman,et al.  Physically-based animation of volumetric objects , 1998, Proceedings Computer Animation '98 (Cat. No.98EX169).

[27]  Michael T. Heath,et al.  Scientific Computing , 2018 .

[28]  M. Rothenberg,et al.  Monitoring vocal fold abduction through vocal fold contact area. , 1988, Journal of speech and hearing research.

[29]  U. Frisch Turbulence: The Legacy of A. N. Kolmogorov , 1996 .

[30]  Mats Åbom,et al.  A note on the aeroacoustic source character of in-duct axial fans , 1995 .

[31]  L. Quartapelle Incompressible Euler equations , 1993 .

[32]  Doug L. James,et al.  ACCURATE REAL TIME DEFORMABLE OBJECTS , 1999 .

[33]  Claes Johnson,et al.  Introduction to Adaptive Methods for Differential Equations , 1995, Acta Numerica.

[34]  Dinesh K. Pai,et al.  ArtDefo: accurate real time deformable objects , 1999, SIGGRAPH.

[35]  Johan Jansson,et al.  IMPLEMENTATION AND ANALYSIS OF A MECHANICS SIMULATION MODULE FOR USE IN A CONCEPTUAL DESIGN SYSTEM , 2000 .

[36]  Jean Leray,et al.  Sur le mouvement d'un liquide visqueux emplissant l'espace , 1934 .

[37]  A. Alwan,et al.  A contribution to simulating a three-dimensional larynx model using the finite element method. , 2003, The Journal of the Acoustical Society of America.

[38]  Dinesh Manocha,et al.  I-COLLIDE: an interactive and exact collision detection system for large-scale environments , 1995, I3D '95.

[39]  L. L. Bucciarelli,et al.  Engineering Mechanics of Solids , 1994 .

[40]  Elaine Cohen,et al.  Haptic interfacing for virtual prototyping of mechanical CAD designs , 1997 .

[41]  Joris S. M. Vergeest,et al.  A GENERAL MECHANICS MODEL FOR SYSTEMS OF DEFORMABLE SOLIDS , .

[42]  Pauli Pedersen Elasticity - Anisotropy - Laminates , 1997 .

[43]  Paolo Cignoni,et al.  A Multiresolution Model for Soft Objects Supporting Interactive Cuts and Lacerations , 2000, Comput. Graph. Forum.

[44]  Thomas W. Sederberg,et al.  Free-form deformation of solid geometric models , 1986, SIGGRAPH.

[45]  Richard Szeliski,et al.  Surface modeling with oriented particle systems , 1992, SIGGRAPH.