Dense matching using correlation: new measures that are robust near occlusions

In the context of computer vision, matching can be done using correlation measures. This paper presents the classification of fifty measures into five families. In addition, eighteen new measures based on robust statistics are presented to deal with the problem of occlusions. An evaluation protocol is proposed and the results show that robust measures (one of the five families), including the new measures, give the best results near occlusions.

[1]  Ahmed Tamtaoui,et al.  Schéma multirésolution d'estimation d'un champ de disparités dense sous contrainte épipolaire pour les images bruitées , 2001 .

[2]  Andrea Giachetti,et al.  Matching techniques to compute image motion , 2000, Image Vis. Comput..

[3]  Peter J. Rousseeuw,et al.  Robust Regression and Outlier Detection , 2005, Wiley Series in Probability and Statistics.

[4]  Julie Delon,et al.  Le phénomène d'adhérence en stéréoscopie dépend du critère de corrélation , 2001 .

[5]  B. Ripley,et al.  Robust Statistics , 2018, Encyclopedia of Mathematical Geosciences.

[6]  Alain Crouzil,et al.  A new correlation criterion based on gradient fields similarity , 1996, Proceedings of 13th International Conference on Pattern Recognition.

[7]  Peter J. Rousseeuw,et al.  Robust estimation in very small samples , 2002 .

[8]  Yu Wang,et al.  Optimal, robust R-estimators and test statistics in the linear model , 1992 .

[9]  Shun'ichi Kaneko,et al.  Robust image registration by increment sign correlation , 2002, Pattern Recognit..

[10]  S. Nayar,et al.  Ordinal Measures for Image Correspondence , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  Lisa M. Brown,et al.  A survey of image registration techniques , 1992, CSUR.

[12]  Yadolah Dodge,et al.  L 1 -Statistical Analysis and Related Methods. , 1993 .

[13]  Shree K. Nayar,et al.  Ordinal Measures for Image Correspondence , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[14]  Farhan Ullah,et al.  Orientation Code Matching for Robust Object Search , 2001 .

[15]  Ramin Zabih,et al.  Non-parametric Local Transforms for Computing Visual Correspondence , 1994, ECCV.

[16]  Richard Szeliski,et al.  A Taxonomy and Evaluation of Dense Two-Frame Stereo Correspondence Algorithms , 2001, International Journal of Computer Vision.

[17]  Paolo Remagnino,et al.  Robust Matching by Partial Correlation , 1995, BMVC.

[18]  Yutaka Satoh,et al.  Using selective correlation coefficient for robust image registration , 2003, Pattern Recognit..

[19]  Zhengyou Zhang,et al.  Parameter estimation techniques: a tutorial with application to conic fitting , 1997, Image Vis. Comput..