Low-temperature electrolysis system modelling: A review

This review provides an exhaustive and comprehensive analysis of the existing modelling works about low temperature electrolysis system: alkaline and proton exchange membrane (PEM) technologies. In order to achieve this review, a classification was built, based on different criteria such as physical domains involved or modelling approaches. The proposed methodology allows both exposing an overview of the electrolysis system modelling field and providing a deep analysis of each reviewed model. Actual strengths, weaknesses and lacks in this research field are pointed out and the performed analysis provides ideas for future research in this area.

[1]  Ibrahim Dincer,et al.  A review on solar-hydrogen/fuel cell hybrid energy systems for stationary applications , 2009 .

[2]  Kodjo Agbossou,et al.  Simulation tool based on a physics model and an electrical analogy for an alkaline electrolyser , 2014 .

[3]  Claude Etievant,et al.  GenHyPEM: A research program on PEM water electrolysis supported by the European Commission , 2009 .

[4]  Steven J. Thorpe,et al.  A review of specific conductivities of potassium hydroxide solutions for various concentrations and temperatures , 2007 .

[5]  Tao Zhou Commande et supervision énergétique d’un générateur hybride actif éolien incluant du stockage sous forme d’hydrogène et des super-condensateurs pour l’intégration dans le système électrique d’un micro réseau , 2009 .

[6]  Modélisation de systèmes hybrides photovoltaïque / Hydrogène : Applications site isolé, micro-réseau, et connexion au réseau électrique dans le cadre du projet PEPITE (ANR PAN-H) , 2010 .

[7]  S. V. Grigoriev,et al.  Chapter 2 – Water Electrolysis Technologies , 2013 .

[8]  M. Péra,et al.  Multiphysics simulation of a PEM electrolyser: Energetic Macroscopic Representation approach , 2011 .

[9]  Robert F. Boehm,et al.  Review of modeling details related to renewably powered hydrogen systems , 2008 .

[10]  Mohan Kolhe,et al.  Equivalent electrical model for a proton exchange membrane (PEM) electrolyser , 2011 .

[11]  Franklin H. Holcomb,et al.  Dynamic first principles model of a complete reversible fuel cell system , 2008 .

[12]  Atilla Biyikoglu,et al.  Review of proton exchange membrane fuel cell models , 2005 .

[13]  B. Kroposki,et al.  Renewable hydrogen production , 2008 .

[14]  R. García‐Valverde,et al.  Simple PEM water electrolyser model and experimental validation , 2012 .

[15]  Shikha Jain,et al.  Hydrogen: A sustainable fuel for future of the transport sector , 2015 .

[16]  D. Stolten,et al.  A comprehensive review on PEM water electrolysis , 2013 .

[17]  Y. Zhai,et al.  Investigations on high performance proton exchange membrane water electrolyzer , 2009 .

[18]  T. Springer,et al.  Polymer Electrolyte Fuel Cell Model , 1991 .

[19]  J. Nitsch,et al.  The contribution of hydrogen in the development of renewable energy sources , 1992 .

[20]  Z. Abdin,et al.  Modelling and simulation of a proton exchange membrane (PEM) electrolyser cell , 2015 .

[21]  Yasuo Hasegawa,et al.  Effect of flow regime of circulating water on a proton exchange membrane electrolyzer , 2010 .

[22]  Stefano Campanari,et al.  Modeling an alkaline electrolysis cell through reduced-order and loss-estimate approaches , 2014 .

[23]  H. Battista,et al.  Hydrogen production from idle generation capacity of wind turbines , 2008 .

[24]  Dongke Zhang,et al.  Recent progress in alkaline water electrolysis for hydrogen production and applications , 2010 .

[25]  S. Watson,et al.  Comparison of electrical energy efficiency of atmospheric and high-pressure electrolysers , 2006 .

[26]  Peter Lund,et al.  Simulation of solar hydrogen energy systems , 1994 .

[27]  S. Grigoriev,et al.  High-pressure PEM water electrolysis and corresponding safety issues , 2011 .

[28]  Zuccari Fabrizio,et al.  Techno-economic optimisation of hydrogen production by PV — electrolysis: RenHydrogen simulation program , 2011 .

[29]  F. Barbir PEM electrolysis for production of hydrogen from renewable energy sources , 2005 .

[30]  Mohammad T. Iqbal,et al.  Dynamic modeling and simulation of alkaline type electrolyzers , 2009, 2009 Canadian Conference on Electrical and Computer Engineering.

[31]  Didier Mayer,et al.  A new approach to empirical electrical modelling of a fuel cell, an electrolyser or a regenerative fuel cell , 2004 .

[32]  B. Yi,et al.  The influence of Ferric ion contamination on the solid polymer electrolyte water electrolysis performance , 2015 .

[33]  M. D. Mat,et al.  Effects of operating parameters on the performance of a high‐pressure proton exchange membrane electrolyzer , 2013 .

[34]  H. Gorgun Dynamic modelling of a proton exchange membrane (PEM) electrolyzer , 2006 .

[35]  Claude Etievant,et al.  Electrochemical performances of PEM water electrolysis cells and perspectives , 2011 .

[36]  Akihiro Suzuki,et al.  Solid polymer electrolyte water electrolysis systems for hydrogen production based on our newly developed membranes, Part I: Analysis of voltage–current characteristics , 2008 .

[37]  M. Santarelli,et al.  Concept of a high pressure PEM electrolyser prototype , 2011 .

[38]  Yulong Ding,et al.  A concise model for evaluating water electrolysis , 2011 .

[39]  Pierre Millet,et al.  Scientific and engineering issues related to PEM technology: Water electrolysers, fuel cells and unitized regenerative systems , 2011 .

[40]  Simon J. Watson,et al.  Alkaline electrolysers: Model and real data analysis , 2011 .

[41]  Caroline Rozain Développement de nouveaux matériaux d’électrodes pour la production d’hydrogène par électrolyse de l’eau , 2013 .

[42]  Frano Barbir,et al.  Transition to renewable energy systems with hydrogen as an energy carrier , 2009 .

[43]  S. Grigoriev,et al.  Mathematical modeling of high-pressure PEM water electrolysis , 2010 .

[44]  P. Lund,et al.  Computational approaches for improving seasonal storage systems based on hydrogen technologies , 1995 .

[45]  S. Kamarudin,et al.  An overview of polymer electrolyte membrane electrolyzer for hydrogen production: Modeling and mass transport , 2016 .

[46]  M. E. Lebbal,et al.  Identification and monitoring of a PEM electrolyser based on dynamical modelling , 2009 .

[47]  F. Barbir,et al.  Hydrogen: the wonder fuel , 1992 .

[48]  A. J. Peters,et al.  A semiempirical study of the temperature dependence of the anode charge transfer coefficient of a 6 kW PEM electrolyzer , 2008 .

[49]  H. Lund,et al.  Towards 100% renewable energy systems☆ , 2011 .

[50]  Sousso Kelouwani,et al.  Model for energy conversion in renewable energy system with hydrogen storage , 2005 .

[51]  Tao Zhou,et al.  Modeling and control design of hydrogen production process for an active hydrogen/wind hybrid power system , 2009 .

[52]  C. Martinson,et al.  Characterisation of a PEM electrolyser using the current interrupt method , 2014 .

[53]  B. Mathiesen,et al.  100% Renewable energy systems, climate mitigation and economic growth , 2011 .

[54]  Pertti Kauranen,et al.  Development of a self-sufficient solar-hydrogen energy system , 1994 .

[55]  M. Santarelli,et al.  Fitting regression model and experimental validation for a high-pressure PEM electrolyzer , 2009 .

[56]  Pierre Millet,et al.  Optimization of porous current collectors for PEM water electrolysers , 2009 .

[57]  Olivier Rallières,et al.  Modélisation et caractérisation de Piles A Combustible et Electrolyseurs PEM , 2011 .

[58]  Chrysovalantou Ziogou,et al.  Infrastructure, automation and model-based operation strategy in a stand-alone hydrolytic solar-hydrogen production unit , 2012 .

[59]  Samer Rabih,et al.  Contribution à la modélisation de systèmes réversibles de types électrolyseur et pile à hydrogène en vue de leur couplage aux générateurs photovoltaïques , 2008 .

[60]  R. L. Sawhney,et al.  Studies on the effect of temperature of the electrolytes on the rate of production of hydrogen , 2004 .

[61]  Yitung Chen,et al.  Numerical and experimental study of three-dimensional fluid flow in the bipolar plate of a PEM electrolysis cell , 2009 .

[62]  Ehab F. El-Saadany,et al.  Overview of wind power intermittency impacts on power systems , 2010 .

[63]  K. Lee,et al.  One-dimensional dynamic modeling of a high-pressure water electrolysis system for hydrogen production , 2013 .

[64]  E. Watanabe,et al.  Experimental and theoretical development of a PEM electrolyzer model applied to energy storage systems , 2009, 2009 Brazilian Power Electronics Conference.

[65]  Ø. Ulleberg Modeling of advanced alkaline electrolyzers: a system simulation approach , 2003 .

[66]  Xiaohong Li,et al.  Prospects for alkaline zero gap water electrolysers for hydrogen production , 2011 .

[67]  Séverine Busquet Etude d'un système autonome de production d'énergie couplant un champ photovoltai͏̈que, un électrolyseur et une pile à combustible : réalisation d'un banc d'essai et modélisation , 2003 .

[68]  Jingke Mo,et al.  Electrochemical performance modeling of a proton exchange membrane electrolyzer cell for hydrogen energy , 2015 .

[69]  P. M. Diéguez,et al.  Thermal performance of a commercial alkaline water electrolyzer: Experimental study and mathematical modeling , 2008 .

[70]  Roberto Carapellucci,et al.  Modeling and optimization of an energy generation island based on renewable technologies and hydrogen storage systems , 2012 .

[71]  C. Bowen,et al.  The Thermodynamics of Aqueous Water Electrolysis , 1980 .

[72]  Pierre Millet,et al.  Electrochemical characterization of Polymer Electrolyte Membrane Water Electrolysis Cells , 2014 .

[73]  M. Santarelli,et al.  Theoretical model and experimental analysis of a high pressure PEM water electrolyser for hydrogen production , 2009 .

[74]  Ralph E. White,et al.  Temperature and Concentration Dependence of the Specific Conductivity of Concentrated Solutions of Potassium Hydroxide , 1997 .

[75]  J. Labbé,et al.  L'Hydrogène électrolytique comme moyen de stockage d'électricité pour systèmes photovoltaïques isolés , 2006 .

[76]  P. Seferlis,et al.  Power management strategies for a stand-alone power system using renewable energy sources and hydrogen storage , 2009 .

[77]  P. Millet Water Electrolysis for Hydrogen Generation , 2012 .

[78]  Mamadou Lamine Doumbia,et al.  New multi-physics approach for modelling and design of alkaline electrolyzers , 2012 .

[79]  Chrysovalantou Ziogou,et al.  Optimal production of renewable hydrogen based on an efficient energy management strategy , 2013 .

[80]  Jesus Rodriguez,et al.  Influence of operation parameters in the modeling of alkaline water electrolyzers for hydrogen production , 2014 .

[81]  Zhe Chen,et al.  Alkaline electrolyzer and V2G system DIgSILENT models for demand response analysis in future distribution networks , 2013, 2013 IEEE Grenoble Conference.

[82]  Jianli Hu,et al.  An overview of hydrogen production technologies , 2009 .

[83]  P. Sanchis,et al.  Static-dynamic modelling of the electrical behaviour of a commercial advanced alkaline water electrolyser , 2012 .

[84]  Pierre Millet,et al.  Design and performance of a solid polymer electrolyte water electrolyzer , 1996 .

[85]  Tetsuya Yoshida,et al.  Influence of pore structural properties of current collectors on the performance of proton exchange membrane electrolyzer , 2013 .

[86]  S. Basu,et al.  Dynamic modeling and simulation of a proton exchange membrane electrolyzer for hydrogen production , 2011 .

[87]  Arash Khalilnejad,et al.  A hybrid wind-PV system performance investigation for the purpose of maximum hydrogen production and storage using advanced alkaline electrolyzer , 2014 .

[88]  Gerda Gahleitner Hydrogen from renewable electricity: An international review of power-to-gas pilot plants for stationary applications , 2013 .

[89]  C. Martinson,et al.  Equivalent electrical circuit modelling of a Proton Exchange Membrane electrolyser based on current interruption , 2013, 2013 IEEE International Conference on Industrial Technology (ICIT).

[90]  D. Bessarabov,et al.  A simple model for solid polymer electrolyte (SPE) water electrolysis , 2004 .

[91]  Guotao Zhang,et al.  A wind-hydrogen energy storage system model for massive wind energy curtailment , 2014 .

[92]  Siddhartha Kumar Khaitan,et al.  System simulation of compressed hydrogen storage based residential wind hybrid power systems , 2012 .

[93]  Yitung Chen,et al.  Numerical modeling of three-dimensional two-phase gas–liquid flow in the flow field plate of a PEM electrolysis cell , 2010 .

[94]  陈金灿,et al.  Efficiency Calculation and Configuration Design of a PEM Electrolyzer System for Hydrogen Production , 2012, International Journal of Electrochemical Science.

[95]  Vincenzo Antonucci,et al.  Dynamic Model of a PEM Electrolyzer based on Artificial Neural Networks , 2011 .

[96]  M. Şahin,et al.  Implementation of an electrolysis system with DC/DC synchronous buck converter , 2014 .

[97]  Steffen Becker,et al.  Predictive models for PEM-electrolyzer performance using adaptive neuro-fuzzy inference systems , 2010 .

[98]  O. Bičáková,et al.  Production of hydrogen from renewable resources and its effectiveness , 2012 .

[99]  Mohan Kolhe,et al.  Empirical electrical modeling for a proton exchange membrane electrolyzer , 2011, 2011 International Conference on Applied Superconductivity and Electromagnetic Devices.

[100]  S. Grigoriev,et al.  PEM water electrolyzers: From electrocatalysis to stack development , 2010 .

[101]  H. Salehfar,et al.  Semiempirical model based on thermodynamic principles for determining 6 kW proton exchange membrane electrolyzer stack characteristics , 2008 .

[102]  D. Leung,et al.  Energy and exergy analysis of hydrogen production by a proton exchange membrane (PEM) electrolyzer plant , 2008 .

[103]  K. Onda,et al.  Performance analysis of polymer-electrolyte water electrolysis cell at a small-unit test cell and performance prediction of large stacked cell , 2002 .

[104]  S. A. Grigor’ev,et al.  Electrolysis of Water in a System with a Solid Polymer Electrolyte at Elevated Pressure , 2001 .

[105]  Daniele Cocco,et al.  Modeling and simulation of an isolated hybrid micro-grid with hydrogen production and storage , 2014 .

[106]  Kréhi Serge Agbli Modélisation multiphysique des flux énergétiques d’un couplage photovoltaïque-électrolyseur PEM-pile à combustible PEM en vue d’une application stationnaire , 2012 .

[107]  N. Guillet,et al.  Membrane degradation in PEM water electrolyzer: Numerical modeling and experimental evidence of the influence of temperature and current density , 2015 .

[108]  N. Djilali,et al.  Transient electrolyser response in a renewable-regenerative energy system , 2009 .

[109]  W Hug,et al.  Intermittent operation and operation modeling of an alkaline electrolyzer , 1993 .