Analysis of Boundary Effects on PDE-Based Sampling of Whittle-Matérn Random Fields

We consider the generation of samples of a mean-zero Gaussian random field with Mat\'ern covariance function. Every sample requires the solution of a differential equation with Gaussian white noise forcing, formulated on a bounded computational domain. This introduces unwanted boundary effects since the stochastic partial differential equation is originally posed on the whole $\mathbb{R}^d$, without boundary conditions. We use a window technique, whereby one embeds the computational domain into a larger domain, and postulates convenient boundary conditions on the extended domain. To mitigate the pollution from the artificial boundary it has been suggested in numerical studies to choose a window size that is at least as large as the correlation length of the Mat\'ern field. We provide a rigorous analysis for the error in the covariance introduced by the window technique, for homogeneous Dirichlet, homogeneous Neumann, and periodic boundary conditions. We show that the error decays exponentially in the window size, independently of the type of boundary condition. We conduct numerical experiments in 1D and 2D space, confirming our theoretical results.

[1]  Ivo Babuška,et al.  The generalized finite element method for Helmholtz equation. Part II: Effect of choice of handbook functions, error due to absorbing boundary conditions and its assessment , 2008 .

[2]  Denis S. Grebenkov,et al.  Geometrical Structure of Laplacian Eigenfunctions , 2012, SIAM Rev..

[3]  David Bolin,et al.  The SPDE approach for Gaussian random fields with general smoothness , 2017 .

[4]  I. Papaioannou,et al.  Numerical methods for the discretization of random fields by means of the Karhunen–Loève expansion , 2014 .

[5]  Marie E. Rognes,et al.  Efficient White Noise Sampling and Coupling for Multilevel Monte Carlo with Nonnested Meshes , 2018, SIAM/ASA J. Uncertain. Quantification.

[6]  Jie Chen,et al.  Linear-Cost Covariance Functions for Gaussian Random Fields , 2017, Journal of the American Statistical Association.

[7]  Ivo Babuška,et al.  The generalized finite element method for Helmholtz equation: Theory, computation, and open problems , 2006 .

[8]  Fabio Nobile,et al.  Low-Rank Tensor Approximation for High-Order Correlation Functions of Gaussian Random Fields , 2015, SIAM/ASA J. Uncertain. Quantification.

[9]  David Bolin,et al.  Weak convergence of Galerkin approximations for fractional elliptic stochastic PDEs with spatial white noise , 2017, BIT Numerical Mathematics.

[10]  Peter K. Kitanidis,et al.  Randomized algorithms for generalized Hermitian eigenvalue problems with application to computing Karhunen–Loève expansion , 2013, Numer. Linear Algebra Appl..

[11]  F. Lindgren,et al.  Exploring a New Class of Non-stationary Spatial Gaussian Random Fields with Varying Local Anisotropy , 2013, 1304.6949.

[12]  David Bolin,et al.  Numerical solution of fractional elliptic stochastic PDEs with spatial white noise , 2017, IMA Journal of Numerical Analysis.

[13]  Frances Y. Kuo,et al.  Analysis of Circulant Embedding Methods for Sampling Stationary Random Fields , 2017, SIAM J. Numer. Anal..

[14]  K. Worsley,et al.  Detecting Sparse Signals in Random Fields, With an Application to Brain Mapping , 2007 .

[15]  David Bolin,et al.  The Rational SPDE Approach for Gaussian Random Fields With General Smoothness , 2017, Journal of Computational and Graphical Statistics.

[16]  E. Stein,et al.  Introduction to Fourier analysis on Euclidean spaces (PMS-32) , 1972 .

[17]  Etienne Pardoux,et al.  Stochastic partial differential equations, a review , 1993 .

[18]  Elisabeth Ullmann,et al.  Computational aspects of the stochastic finite element method , 2007 .

[19]  Mourad E. H. Ismail,et al.  Complete monotonicity of modified Bessel functions , 1990 .

[20]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[21]  Catherine E. Powell,et al.  An Introduction to Computational Stochastic PDEs , 2014 .

[22]  Panayot S. Vassilevski,et al.  Scalable hierarchical PDE sampler for generating spatially correlated random fields using nonmatching meshes , 2017, Numer. Linear Algebra Appl..

[23]  Peter Benner,et al.  Low-Rank Eigenvector Compression of Posterior Covariance Matrices for Linear Gaussian Inverse Problems , 2018, SIAM/ASA J. Uncertain. Quantification.

[24]  Hermann G. Matthies,et al.  Application of hierarchical matrices for computing the Karhunen–Loève expansion , 2009, Computing.

[25]  F. Lindgren,et al.  Spatial models generated by nested stochastic partial differential equations, with an application to global ozone mapping , 2011, 1104.3436.

[26]  Georg Stadler,et al.  Scalable and efficient algorithms for the propagation of uncertainty from data through inference to prediction for large-scale problems, with application to flow of the Antarctic ice sheet , 2014, J. Comput. Phys..

[27]  F. S. Cohen,et al.  Classification of Rotated and Scaled Textured Images Using Gaussian Markov Random Field Models , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[28]  M. Stein Nonstationary spatial covariance functions , 2005 .

[29]  Christoph Schwab,et al.  Karhunen-Loève approximation of random fields by generalized fast multipole methods , 2006, J. Comput. Phys..

[30]  Francesco Rizzi,et al.  Parallel Domain Decomposition Strategies for Stochastic Elliptic Equations. Part A: Local Karhunen-Loève Representations , 2018, SIAM J. Sci. Comput..

[31]  Qiang Du,et al.  Numerical Approximation of Some Linear Stochastic Partial Differential Equations Driven by Special Additive Noises , 2002, SIAM J. Numer. Anal..

[32]  L. Milne‐Thomson A Treatise on the Theory of Bessel Functions , 1945, Nature.

[33]  Gordon A. Fenton,et al.  Influence of spatial variability on slope reliability using 2-D random fields. , 2009 .

[34]  R. Adler The Geometry of Random Fields , 2009 .

[35]  Debraj Ghosh,et al.  Faster computation of the Karhunen-Loeve expansion using its domain independence property , 2015 .

[36]  Helmut Harbrecht,et al.  Efficient approximation of random fields for numerical applications , 2015, Numer. Linear Algebra Appl..

[37]  H. Helson Harmonic Analysis , 1983 .

[38]  Roger Woodard,et al.  Interpolation of Spatial Data: Some Theory for Kriging , 1999, Technometrics.

[39]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[40]  Georg Stadler,et al.  Mitigating the Influence of the Boundary on PDE-based Covariance Operators , 2016, 1610.05280.

[41]  R. Kress,et al.  Inverse Acoustic and Electromagnetic Scattering Theory , 1992 .

[42]  Andrew M. Stuart,et al.  Inverse problems: A Bayesian perspective , 2010, Acta Numerica.

[43]  James Martin,et al.  A Computational Framework for Infinite-Dimensional Bayesian Inverse Problems Part I: The Linearized Case, with Application to Global Seismic Inversion , 2013, SIAM J. Sci. Comput..

[44]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[45]  P. Whittle ON STATIONARY PROCESSES IN THE PLANE , 1954 .

[46]  A. Szalay,et al.  The statistics of peaks of Gaussian random fields , 1986 .

[47]  Barbara I. Wohlmuth,et al.  Scheduling Massively Parallel Multigrid for Multilevel Monte Carlo Methods , 2016, SIAM J. Sci. Comput..

[48]  Frances Y. Kuo,et al.  Fast random field generation with H-matrices , 2017, Numerische Mathematik.

[49]  Zhongqiang Zhang,et al.  Strong and weak convergence order of finite element methods for stochastic PDEs with spatial white noise , 2016, Numerische Mathematik.

[50]  R. Adler,et al.  The Geometry of Random Fields , 1982 .

[51]  C. R. Dietrich,et al.  Fast and Exact Simulation of Stationary Gaussian Processes through Circulant Embedding of the Covariance Matrix , 1997, SIAM J. Sci. Comput..

[52]  Zhimin Zhang,et al.  Finite element and difference approximation of some linear stochastic partial differential equations , 1998 .

[53]  H. Harbrecht,et al.  On the low-rank approximation by the pivoted Cholesky decomposition , 2012 .

[54]  Wei Cai,et al.  What Is the Fractional Laplacian , 2018, 1801.09767.

[55]  Finn Lindgren,et al.  Bayesian Spatial Modelling with R-INLA , 2015 .

[56]  H. Rue,et al.  An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach , 2011 .

[57]  Lassi Roininen,et al.  Whittle-Matérn priors for Bayesian statistical inversion with applications in electrical impedance tomography , 2014 .

[58]  P. Guttorp,et al.  Studies in the history of probability and statistics XLIX On the Matérn correlation family , 2006 .

[59]  Max D. Gunzburger,et al.  Coarse-Grid Sampling Interpolatory Methods for Approximating Gaussian Random Fields , 2013, SIAM/ASA J. Uncertain. Quantification.

[60]  Andrew T. A. Wood,et al.  Algorithm AS 312: An Algorithm for Simulating Stationary Gaussian Random Fields , 1997 .

[61]  Panayot S. Vassilevski,et al.  A Multilevel, Hierarchical Sampling Technique for Spatially Correlated Random Fields , 2017, SIAM J. Sci. Comput..

[62]  Andrea Laforgia Bounds for modified Bessel functions , 1991 .

[63]  X. Sanchez‐Vila,et al.  Representative hydraulic conductivities in saturated groundwater flow , 2006 .