Autonomous capture of a tumbling satellite

In this paper, we describe a framework for the autonomous capture and servicing of satellites. The work is based on laboratory experiments that illustrate the autonomy and remote-operation aspects. The satellite-capture problem is representative of most on-orbit robotic manipulation tasks where the environment is known and structured, but it is dynamic since the satellite to be captured is in free flight. Bandwidth limitations and communication dropouts dominate the quality of the communication link. The satellite-servicing scenario is implemented on a robotic test-bed in laboratory settings

[1]  Gerd Hirzinger,et al.  Sensor-based space robotics-ROTEX and its telerobotic features , 1993, IEEE Trans. Robotics Autom..

[2]  Clément Gosselin,et al.  Underactuation in robotic grasping hands , 2002 .

[3]  Tsuneo Yoshikawa,et al.  Manipulability of Robotic Mechanisms , 1985 .

[4]  Takashi Kubota,et al.  Capture strategy for retrieval of a tumbling satellite by a space robotic manipulator , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[5]  Yoshihiko Nakamura,et al.  Advanced robotics - redundancy and optimization , 1990 .

[6]  H. C. Corben,et al.  Classical Mechanics (2nd ed.) , 1961 .

[7]  A. Popov Mission planning on the international space station program. Concepts and systems , 2003, 2003 IEEE Aerospace Conference Proceedings (Cat. No.03TH8652).

[8]  Noriyasu Inaba,et al.  Autonomous satellite capture by a space robot: world first on-orbit experiment on a Japanese robot satellite ETS-VII , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[9]  M. Kaplan Modern spacecraft dynamics & control , 1976 .

[10]  J. Kouwen,et al.  The ERA System: Control Architecture and Performances Results , 2001 .

[11]  Pradeep K. Khosla,et al.  Strategies for Increasing the Tracking Region of an Eye-in-Hand System by Singularity and Joint Limit Avoidance , 1993, [1993] Proceedings IEEE International Conference on Robotics and Automation.

[12]  Jeng Yen,et al.  The design and architecture of the Rover Sequencing and Visualization Program (RSVP) , 2004 .

[13]  Kam S. Tso,et al.  Autonomous sensor-based dual-arm satellite grappling , 1989 .

[14]  Dennis Wingo Orbital Recovery's Responsive Commercial Space Tug for Life Extension Missions , 2004 .

[15]  Albert Bosse,et al.  SUMO: spacecraft for the universal modification of orbits , 2004, SPIE Defense + Commercial Sensing.

[16]  Cheng Li,et al.  A Chinese Small Intelligent Space Robotic System for On-Orbit Servicing , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[17]  M. Kaplan Modern Spacecraft Dynamics and Control , 1976 .

[18]  Timothy E. Rumford Demonstration of autonomous rendezvous technology (DART) project summary , 2003, SPIE Defense + Commercial Sensing.

[19]  Paul S. Schenker,et al.  Improved Rover State Estimation in Challenging Terrain , 1999, Auton. Robots.

[20]  Paul S. Schenker,et al.  CAMPOUT: a control architecture for tightly coupled coordination of multirobot systems for planetary surface exploration , 2003, IEEE Trans. Syst. Man Cybern. Part A.

[21]  T. Boge,et al.  A New Commanding and Control Environment for Rendezvous and Docking Simulations at the EPOS-Facility , 2002 .

[22]  Tara A. Estlin,et al.  CLARAty and challenges of developing interoperable robotic software , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[23]  Donald B. Gennery,et al.  Visual tracking of known three-dimensional objects , 1992, International Journal of Computer Vision.

[24]  Erick Dupuis,et al.  THE TECSAS MISSION FROM A CANADIAN PERSPECTIVE , 2005 .

[25]  J. W. Humberston Classical mechanics , 1980, Nature.

[26]  Kazuya Yoshida,et al.  Dynamics, control and impedance matching for robotic capture of a non-cooperative satellite , 2004, Adv. Robotics.

[27]  Shinobu Doi,et al.  JEM Remote Manipulator System , 2002 .

[28]  Rachid Alami,et al.  An Architecture for Autonomy , 1998, Int. J. Robotics Res..

[29]  Wigbert Fehse,et al.  Automated Rendezvous and Docking of Spacecraft , 2003 .

[30]  Michael G. Lipsett,et al.  Interactive intelligent remote operations: application to space robotics , 1999, Optics East.

[31]  Tohru Suzuki,et al.  Results of the ETS-7 Mission - Rendezvous Docking and Space Robotics Experiments , 1999 .

[32]  Tara Estlin,et al.  The CLARAty architecture for robotic autonomy , 2001, 2001 IEEE Aerospace Conference Proceedings (Cat. No.01TH8542).

[33]  O. Urakawa,et al.  Small - , 2007 .

[34]  Stephane Ruel,et al.  3D LASSO: REAL-TIME POSE ESTIMATION FROM 3D DATA FOR AUTONOMOUS SATELLITE SERVICING , 2005 .

[35]  Samuel B. Wilson,et al.  DARPA Orbital Express program: effecting a revolution in space-based systems , 2000, SPIE Optics + Photonics.

[36]  Kazuya Yoshida,et al.  Engineering Test Satellite VII Flight Experiments for Space Robot Dynamics and Control: Theories on Laboratory Test Beds Ten Years Ago, Now in Orbit , 2003, Int. J. Robotics Res..

[37]  Klaus Landzettel,et al.  A Universal Task-Level Ground Control and Programming System for Space Robot Applications , 1999 .