A Convexity Principle for Interacting Gases
暂无分享,去创建一个
[1] F. Riesz. Sur Une Inégalité Intégarale , 1930 .
[2] H. Hadwiger,et al. Brunn-Minkowskischer Satz und Isoperimetrie , 1956 .
[3] R. Rockafellar. Characterization of the subdifferentials of convex functions , 1966 .
[4] W. Rudin. Real and complex analysis , 1968 .
[5] H. Fédérer. Geometric Measure Theory , 1969 .
[6] A. Prékopa. Logarithmic concave measures with applications to stochastic programming , 1971 .
[7] R. Beals,et al. Variational solutions of some nonlinear free boundary problems , 1971 .
[8] L. Leindler. On a Certain Converse of Hölder’s Inequality , 1972 .
[9] A. Prékopa. On logarithmic concave measures and functions , 1973 .
[10] E. Lieb,et al. On extensions of the Brunn-Minkowski and Prékopa-Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation , 1976 .
[11] 丸山 徹. Convex Analysisの二,三の進展について , 1977 .
[12] E. Lieb. Thomas-fermi and related theories of atoms and molecules , 1981 .
[13] I. Olkin,et al. The distance between two random vectors with given dispersion matrices , 1982 .
[14] D. Dowson,et al. The Fréchet distance between multivariate normal distributions , 1982 .
[15] C. Givens,et al. A class of Wasserstein metrics for probability distributions. , 1984 .
[16] M. Knott,et al. On the optimal mapping of distributions , 1984 .
[17] P. Lions. The concentration-compactness principle in the Calculus of Variations , 1984 .
[18] P. Lions. The concentration-compactness principle in the calculus of variations. The locally compact case, part 1 , 1984 .
[19] E. Lieb,et al. The Chandrasekhar theory of stellar collapse as the limit of quantum mechanics , 1987 .
[20] Y. Brenier. Polar Factorization and Monotone Rearrangement of Vector-Valued Functions , 1991 .
[21] L. Caffarelli. The regularity of mappings with a convex potential , 1992 .
[22] K. Ball. CONVEX BODIES: THE BRUNN–MINKOWSKI THEORY , 1994 .
[23] R. McCann. A convexity theory for interacting gases and equilibrium crystals , 1994 .
[24] R. McCann. Existence and uniqueness of monotone measure-preserving maps , 1995 .