Programmable motion of DNA origami mechanisms

Significance Folding DNA into complex 3D shapes (DNA origami) has emerged as a powerful method for the precise design and fabrication of self-assembled nanodevices. Current efforts have focused largely on developing static objects or structures with small movements and/or unspecified motion paths. Here we establish a basis for developing DNA-based nanomachines by creating dynamic mechanisms with well-defined motion. We demonstrate the design of nanoscale 1D, 2D, and 3D motion by integrating concepts from engineering machine design with DNA origami nanotechnology. DNA origami enables the precise fabrication of nanoscale geometries. We demonstrate an approach to engineer complex and reversible motion of nanoscale DNA origami machine elements. We first design, fabricate, and characterize the mechanical behavior of flexible DNA origami rotational and linear joints that integrate stiff double-stranded DNA components and flexible single-stranded DNA components to constrain motion along a single degree of freedom and demonstrate the ability to tune the flexibility and range of motion. Multiple joints with simple 1D motion were then integrated into higher order mechanisms. One mechanism is a crank–slider that couples rotational and linear motion, and the other is a Bennett linkage that moves between a compacted bundle and an expanded frame configuration with a constrained 3D motion path. Finally, we demonstrate distributed actuation of the linkage using DNA input strands to achieve reversible conformational changes of the entire structure on ∼minute timescales. Our results demonstrate programmable motion of 2D and 3D DNA origami mechanisms constructed following a macroscopic machine design approach.

[1]  G. T. Bennett,et al.  The Skew Isogram Mechanism , 1914 .

[2]  Arthur G. Erdman,et al.  Mechanism Design : Analysis and Synthesis , 1984 .

[3]  N. Seeman Nucleic Acid Nanostructures and Topology. , 1998, Angewandte Chemie.

[4]  N. Seeman,et al.  A nanomechanical device based on the B–Z transition of DNA , 1999, Nature.

[5]  A. Turberfield,et al.  A DNA-fuelled molecular machine made of DNA , 2022 .

[6]  T. Pollard,et al.  Direct observation of dendritic actin filament networks nucleated by Arp2/3 complex and WASP/Scar proteins , 2000, Nature.

[7]  G. Chirikjian Conformational statistics of macromolecules using generalized convolution , 2001 .

[8]  N. Seeman,et al.  A robust DNA mechanical device controlled by hybridization topology , 2002, Nature.

[9]  S. Balasubramanian,et al.  A proton-fuelled DNA nanomachine. , 2003, Angewandte Chemie.

[10]  Yan Chen,et al.  Design of structural mechanisms , 2003 .

[11]  J. Reif,et al.  A two-state DNA lattice switched by DNA nanoactuator. , 2003, Angewandte Chemie.

[12]  Shuguang Zhang Fabrication of novel biomaterials through molecular self-assembly , 2003, Nature Biotechnology.

[13]  J. Reif,et al.  A unidirectional DNA walker that moves autonomously along a track. , 2004, Angewandte Chemie.

[14]  Kazem Kazerounian,et al.  From Mechanisms and Robotics to Protein Conformation and Drug Design , 2004 .

[15]  M. Brucale,et al.  The dynamic properties of an intramolecular transition from DNA duplex to cytosine-thymine motif triplex. , 2005, Organic & biomolecular chemistry.

[16]  K. Kazerounian,et al.  Protofold: A Successive Kinetostatic Compliance Method for Protein Conformation Prediction , 2005 .

[17]  Constantinos Mavroidis,et al.  Analysis and Design of Protein Based Nanodevices: Challenges and Opportunities in Mechanical Design , 2005 .

[18]  S. Balasubramanian,et al.  DNA molecular motor driven micromechanical cantilever arrays. , 2005, Journal of the American Chemical Society.

[19]  C. Mavroidis,et al.  Bio-Nanorobotics: State of the Art and Future Challenges , 2005 .

[20]  P. Rothemund Folding DNA to create nanoscale shapes and patterns , 2006, Nature.

[21]  S. Balasubramanian,et al.  A reversible pH-driven DNA nanoswitch array. , 2006, Journal of the American Chemical Society.

[22]  N. Seeman,et al.  Operation of a DNA Robot Arm Inserted into a 2D DNA Crystalline Substrate , 2006, Science.

[23]  G. Seelig,et al.  Enzyme-Free Nucleic Acid Logic Circuits , 2022 .

[24]  Yaozhi Luo,et al.  Deployable membrane structure based on the Bennett linkage , 2007 .

[25]  A. Turberfield,et al.  DNA nanomachines. , 2007, Nature nanotechnology.

[26]  E. Klavins,et al.  An improved autonomous DNA nanomotor. , 2007, Nano letters.

[27]  Faisal A. Aldaye,et al.  Modular access to structurally switchable 3D discrete DNA assemblies. , 2007, Journal of the American Chemical Society.

[28]  J. Kjems,et al.  Self-assembly of a nanoscale DNA box with a controllable lid , 2009, Nature.

[29]  D. Y. Zhang,et al.  Control of DNA strand displacement kinetics using toehold exchange. , 2009, Journal of the American Chemical Society.

[30]  Shawn M. Douglas,et al.  Self-assembly of DNA into nanoscale three-dimensional shapes , 2009, Nature.

[31]  Antoine Ferreira,et al.  Multiscale Design and Modeling of Protein-based Nanomechanisms for Nanorobotics , 2009, Int. J. Robotics Res..

[32]  Adam H. Marblestone,et al.  Rapid prototyping of 3D DNA-origami shapes with caDNAno , 2009, Nucleic acids research.

[33]  Ruojie Sha,et al.  A Bipedal DNA Brownian Motor with Coordinated Legs , 2009, Science.

[34]  Hao Yan,et al.  Gold nanoparticle self-similar chain structure organized by DNA origami. , 2010, Journal of the American Chemical Society.

[35]  Kersten S. Rabe,et al.  Orthogonal protein decoration of DNA origami. , 2010, Angewandte Chemie.

[36]  N. Seeman,et al.  DNA scissors device used to measure MutS binding to DNA mis-pairs. , 2010, Journal of the American Chemical Society.

[37]  Erik Winfree,et al.  Molecular robots guided by prescriptive landscapes , 2010, Nature.

[38]  D. Ingber,et al.  Self-assembly of three-dimensional prestressed tensegrity structures from DNA , 2010 .

[39]  N. Seeman,et al.  A Proximity-Based Programmable DNA Nanoscale Assembly Line , 2010, Nature.

[40]  W. B. Knowlton,et al.  Programmable Periodicity of Quantum Dot Arrays with DNA Origami Nanotubes , 2010, Nano letters.

[41]  M. Komiyama,et al.  Stepwise and reversible nanopatterning of proteins on a DNA origami scaffold. , 2010, Chemical communications.

[42]  N. Seeman Nanomaterials based on DNA. , 2010, Annual review of biochemistry.

[43]  Hao Yan,et al.  Folding and cutting DNA into reconfigurable topological nanostructures. , 2010, Nature nanotechnology.

[44]  D. Ingber,et al.  Self-assembly of 3D prestressed tensegrity structures from DNA , 2010, Nature nanotechnology.

[45]  F. Simmel,et al.  DNA origami-based nanoribbons: assembly, length distribution, and twist , 2011, Nanotechnology.

[46]  R. Seidel,et al.  Direct mechanical measurements reveal the material properties of three-dimensional DNA origami. , 2011, Nano letters.

[47]  Jehoshua Bruck,et al.  Neural network computation with DNA strand displacement cascades , 2011, Nature.

[48]  John B. Matson,et al.  Peptide Self-Assembly for Crafting Functional Biological Materials. , 2011, Current opinion in solid state & materials science.

[49]  Zhong You,et al.  Motion Structures: Deployable Structural Assemblies of Mechanisms , 2011 .

[50]  M. Komiyama,et al.  Nanomechanical DNA origami 'single-molecule beacons' directly imaged by atomic force microscopy , 2011, Nature communications.

[51]  J. Kjems,et al.  A DNA tile actuator with eleven discrete states. , 2011, Angewandte Chemie.

[52]  G. Seelig,et al.  Dynamic DNA nanotechnology using strand-displacement reactions. , 2011, Nature chemistry.

[53]  Mark Bathe,et al.  A primer to scaffolded DNA origami , 2011, Nature Methods.

[54]  Samara L. Reck-Peterson,et al.  Tug-of-War in Motor Protein Ensembles Revealed with a Programmable DNA Origami Scaffold , 2012, Science.

[55]  G. Lavella,et al.  A synthetic chemomechanical machine driven by ligand-receptor bonding. , 2012, Nano letters.

[56]  M. Bathe,et al.  Designer nucleic acids to probe and program the cell. , 2012, Trends in cell biology.

[57]  Shawn M. Douglas,et al.  A Logic-Gated Nanorobot for Targeted Transport of Molecular Payloads , 2012, Science.

[58]  Nicholas A W Bell,et al.  DNA origami nanopores. , 2012, Nano letters.

[59]  Mette D. E. Jepsen,et al.  Construction of a 4 zeptoliters switchable 3D DNA box origami. , 2012, ACS nano.

[60]  Hao Yan,et al.  Reconfigurable DNA origami to generate quasifractal patterns. , 2012, Nano letters.

[61]  T. G. Martin,et al.  Cryo-EM structure of a 3D DNA-origami object , 2012, Proceedings of the National Academy of Sciences.

[62]  T. G. Martin,et al.  Synthetic Lipid Membrane Channels Formed by Designed DNA Nanostructures , 2012, Science.

[63]  R. Chapman,et al.  Design and properties of functional nanotubes from the self-assembly of cyclic peptide templates. , 2012, Chemical Society reviews.

[64]  T. G. Martin,et al.  DNA origami gatekeepers for solid-state nanopores. , 2012, Angewandte Chemie.

[65]  S. Stupp,et al.  Self-Assembly for the Synthesis of Functional Biomaterials. , 2013, Acta materialia.

[66]  Anusuya Banerjee,et al.  Controlled release of encapsulated cargo from a DNA icosahedron using a chemical trigger. , 2013, Angewandte Chemie.

[67]  Xue-mei Li,et al.  A duplex–triplex nucleic acid nanomachine that probes pH changes inside living cells during apoptosis , 2013, Analytical and Bioanalytical Chemistry.

[68]  V. Linko,et al.  The enabled state of DNA nanotechnology. , 2013, Current opinion in biotechnology.

[69]  H. Su,et al.  DNA origami compliant nanostructures with tunable mechanical properties. , 2014, ACS nano.

[70]  A. Kuzyk,et al.  Reconfigurable 3D plasmonic metamolecules. , 2014, Nature materials.

[71]  R. Cross,et al.  Molecular machines , 2017, Biophysical Reviews.