A Conceptual Framework of a Decision Support System for Operational Dispatching of Agricultural Bulk Goods - An Agent-Based Approach

Transportation planning may imply versatile and complex decision problems. The most distinctive feature of agricultural transportation planning is: a dynamic and rapid transaction of harvesting processes. During the harvesting process various actors such as farmers, contractors, agricultural traders, transportation companies and processing industries have to collaborate. This contribution presents a conceptual framework of a decision support approach for operational dispatching and its implementation based upon a multi-agent system (MAS). This agent-based approach enables users to conflate dispersed structure information, apply optimization techniques and provide a goal-oriented planning and transaction of transportation.

[1]  P. C. Schuur,et al.  Interaction between intelligent agent strategies for real-time transportation planning , 2013, Central Eur. J. Oper. Res..

[2]  Leonid Sheremetov,et al.  Supply chain network optimization based on collective intelligence and agent technologies , 2008 .

[3]  Gregor Dudek,et al.  Collaborative Planning in Supply Chains , 2004 .

[4]  Wolfgang Prümper,et al.  Der Internal 4PL — Best Practice „Metro Group“ , 2004 .

[5]  Nicholas R. Jennings,et al.  Intelligent agents: theory and practice , 1995, The Knowledge Engineering Review.

[6]  Christof Weinhardt,et al.  Elektronische Märkte für die dezentrale Transportplanung , 1997, Wirtsch..

[7]  Ivan Ka Wai Lai The strategic changes by adopting internet‐based interorganizational systems , 2007 .

[8]  I. Darkow,et al.  Supply Chain Steuerung und Services , 2004 .

[9]  Xue Zhong Wang,et al.  A multi-agent system for chemical supply chain simulation and management support , 2002, OR Spectr..

[10]  B. Hellingrath,et al.  Dezentrales Koordinationskonzept zur multilateralen kollaborativen Produktions- und Distributionsplanung , 2012, MKWI 2012.

[11]  Wil M. P. van der Aalst,et al.  Loosely coupled interorganizational workflows: : modeling and analyzing workflows crossing organizational boundaries , 2000, Inf. Manag..

[12]  Samar K. Mukhopadhyay,et al.  The role of 4PL as the reverse logistics integrator , 2006 .

[13]  Rui M. Sousa,et al.  Distributed production planning and control agent-based system , 2006 .

[14]  Li D. Xu Information architecture for supply chain quality management , 2011 .

[15]  Huitian Lu,et al.  A Study of Multi-Agent Based Supply Chain Modeling and Management , 2010 .

[16]  Chang Ouk Kim,et al.  Multi-agent systems applications in manufacturing systems and supply chain management: a review paper , 2008 .

[17]  Vikas Kumar,et al.  A multi-agent architecture for reverse logistics in a green supply chain , 2012 .

[18]  G. Dudek,et al.  Collaborative Planning in Supply Chains: A Negotiation-Based Approach , 2004 .

[19]  Alan Win,et al.  The value a 4PL provider can contribute to an organisation , 2008 .

[20]  Wen-Yau Liang,et al.  Agent-based demand forecast in multi-echelon supply chain , 2006, Decis. Support Syst..

[21]  Bernd Hellingrath,et al.  Integrierte agentenbasierte Produktions- und Logistikplanung in der Supply Chain , 2010, KI - Künstliche Intelligenz.

[22]  Yee Ming Chen,et al.  Multi-agent-oriented approach to supply chain planning and scheduling in make-to-order manufacturing , 2007, Int. J. Electron. Bus..

[23]  Toshiya Kaihara,et al.  Game theoretic enterprise management in industrial collaborative networks with multi-agent systems , 2008 .