Pre-breakdown evaluation of gas discharge mechanisms in microgaps

The individual contributions of various gas discharge mechanisms to total pre-breakdown current in microgaps are quantified numerically. The variation of contributions of field emission and secondary electron emission with increasing electric field shows contrasting behavior even for a given gap size. The total current near breakdown decreases rapidly with gap size indicating that microscale discharges operate in a high-current, low-voltage regime. This study provides the first such analysis of breakdown mechanisms and aids in the formulation of physics-based theories for microscale breakdown.

[1]  D. Go,et al.  An analytical formulation for the modified Paschen's curve , 2010 .

[2]  B. Radjenovic,et al.  Theoretical study of the electron field emission phenomena in the generation of a micrometer scale discharge , 2008 .

[3]  R. Fowler,et al.  Electron Emission in Intense Electric Fields , 1928 .

[4]  H. Kroemer,et al.  Corrected Values of Fowler-Nordheim Field Emission Functions v(y) and s(y) , 1953 .

[5]  Š. Matejčík,et al.  The role of the field emission effect in direct-current argon discharges for the gaps ranging from 1 to 100 µm , 2013 .

[6]  D. Go,et al.  The Coupling of Ion-Enhanced Field Emission and the Discharge During Microscale Breakdown at Moderately High Pressures , 2013, IEEE Transactions on Plasma Science.

[7]  J. Andrew Yeh,et al.  Electrical breakdown phenomena for devices with micron separations , 2006 .

[8]  B. S. Gossling,et al.  Further studies in the emission of electrons from cold metals , 1929 .

[9]  D. Marić,et al.  On Explanation of the Double-Valued Paschen-Like Curve for RF Breakdown in Argon , 2011, IEEE Transactions on Plasma Science.

[10]  B. Radjenovic,et al.  An analytical relation describing the dramatic reduction of the breakdown voltage for the microgap devices , 2008 .

[11]  Charles K. Birdsall,et al.  Capacitive RF discharges modelled by particle-in-cell Monte Carlo simulation. I. Analysis of numerical techniques , 1993 .

[12]  Particle-in-cell simulation of gas breakdown in microgaps , 2004, physics/0409131.

[13]  Panos Kosmas,et al.  2012 INTERNATIONAL CONFERENCE ON ELECTROMAGNETICS IN ADVANCED APPLICATIONS (ICEAA) , 2012 .

[14]  Dimitrios Peroulis,et al.  Direct measurements and numerical simulations of gas charging in microelectromechanical system capacitive switches , 2012 .

[15]  F. Iza,et al.  Electron kinetics in radio-frequency atmospheric-pressure microplasmas. , 2007, Physical review letters.

[16]  David B. Go,et al.  A mathematical model of the modified Paschen's curve for breakdown in microscale gaps , 2010 .

[17]  R. G. Lerner,et al.  Encyclopedia of Physics , 1990 .

[18]  J. Walsh,et al.  Atmospheric-pressure gas breakdown from 2 to 100 MHz , 2008 .

[19]  H. Laster,et al.  Encyclopedia of physics. , 1966, Science.

[20]  W. S. Boyle,et al.  Departure from Paschen's Law of Breakdown in Gases , 1955 .

[21]  James L. Walsh,et al.  Microplasmas: sources, particle kinetics, and biomedical applications , 2008 .

[22]  A. Fridman,et al.  Plasma Physics and Engineering , 2021 .

[23]  Iu. P. Raizer Gas Discharge Physics , 1991 .

[24]  Š. Matejčík,et al.  Experimental and theoretical studies of the direct-current breakdown voltage in argon at micrometer separations , 2011 .

[25]  John P. Verboncoeur,et al.  Simultaneous potential and circuit solution for 1D bounded plasma particle simulation codes , 1990 .

[26]  A. Lichtenberg,et al.  Principles of Plasma Discharges and Materials Processing: Lieberman/Plasma 2e , 2005 .

[27]  V. Lisovskiy,et al.  Low-pressure gas breakdown in longitudinal combined electric fields , 2010 .

[28]  D. Go,et al.  Fundamental properties of field emission-driven direct current microdischarges , 2012 .

[29]  A. Lichtenberg,et al.  Principles of Plasma Discharges and Materials Processing , 1994 .

[30]  Charles K. Birdsall,et al.  Particle-in-cell charged-particle simulations, plus Monte Carlo collisions with neutral atoms, PIC-MCC , 1991 .

[31]  B. Radjenovic,et al.  Modelling of a low-pressure argon breakdown in combined fields , 2006 .

[32]  C. Charles,et al.  Breakdown behavior in radio-frequency argon discharges , 2003 .

[33]  J. Amorim,et al.  Microhollow cathode discharge and breakdown in micron separations , 2008 .

[34]  Alina A. Alexeenko,et al.  Scaling law for direct current field emission-driven microscale gas breakdown , 2012 .

[35]  D. Douai,et al.  Low-pressure gas breakdown in dual-frequency RF electric fields in nitrogen , 2007 .