Behavioural equivalences for coalgebras with unobservable moves

We introduce a general categorical framework for the definition of weak behavioural equivalences, building on and extending recent results in the field. This framework is based on parametrized saturation categories, i.e. categories whose hom-sets are endowed with complete orders and a suitable iteration operators; this structure allows us to provide the abstract definitions of various (weak) behavioural equivalence. We show that the Kleisli categories of many common monads are categories of this kind. This allows us to readily instantiate the abstract definitions to a wide range of existing systems (weighted LTS, Segala systems, calculi with names, etc.), recovering the corresponding notions of weak behavioural equivalences. Moreover, we can provide neatly new weak behavioural equivalences for more complex behaviours, like those definable on topological spaces, measurable spaces, etc.

[1]  Alexandra Silva,et al.  Killing epsilons with a dagger: A coalgebraic study of systems with algebraic label structure , 2015, Theor. Comput. Sci..

[2]  Alexandra Silva,et al.  Generalizing determinization from automata to coalgebras , 2013, Log. Methods Comput. Sci..

[3]  Giorgio Bacci,et al.  Structural operational semantics for continuous state stochastic transition systems , 2015, J. Comput. Syst. Sci..

[4]  Robert W. J. Furber,et al.  From Kleisli Categories to Commutative C*-algebras: Probabilistic Gelfand Duality , 2013, Log. Methods Comput. Sci..

[5]  Stefan Milius,et al.  Complete Iterativity for Algebras with Effects , 2009, CALCO.

[6]  R. J. vanGlabbeek The linear time - branching time spectrum , 1990 .

[7]  Ana Sokolova,et al.  Probabilistic systems coalgebraically: A survey , 2011, Theor. Comput. Sci..

[8]  S. Lack A 2-Categories Companion , 2007, math/0702535.

[9]  Ernst-Erich Doberkat,et al.  Weak Bisimulations for the Giry Monad (Extended Abstract) , 2008, TAMC.

[10]  A. Sokolova,et al.  Coalgebraic Weak Bisimulation for Action-Type Systems , 1985, Sci. Ann. Comput. Sci..

[11]  Tomasz Brengos,et al.  Weak bisimulation for coalgebras over order enriched monads , 2013, Log. Methods Comput. Sci..

[12]  Zoltán Ésik,et al.  Iteration Grove Theories with Applications , 2009, CAI.

[13]  Erik P. de Vink,et al.  Coalgebraic Weak Bisimulation for Action-Type Systems , 2009, Sci. Ann. Comput. Sci..

[14]  Philip S. Mulry,et al.  Lifting Theorems for Kleisli Categories , 1993, MFPS.

[15]  D. Sangiorgi Introduction to Bisimulation and Coinduction , 2011 .

[16]  Dirk Pattinson,et al.  Coalgebraic Weak Bisimulation from Recursive Equations over Monads , 2014, ICALP.

[17]  Abbas Edalat,et al.  Bisimulation for labelled Markov processes , 1997, Proceedings of Twelfth Annual IEEE Symposium on Logic in Computer Science.

[18]  Ana Sokolova,et al.  Generic Trace Semantics via Coinduction , 2007, Log. Methods Comput. Sci..

[19]  Ernst-Erich Doberkat Stochastic Coalgebraic Logic , 2009, Monographs in Theoretical Computer Science. An EATCS Series.

[20]  Marino Miculan A Categorical Model of the Fusion Calculus , 2008, MFPS.

[21]  Gordon D. Plotkin,et al.  Towards a mathematical operational semantics , 1997, Proceedings of Twelfth Annual IEEE Symposium on Logic in Computer Science.

[22]  Rob J. van Glabbeek,et al.  The Linear Time - Branching Time Spectrum I , 2001, Handbook of Process Algebra.

[23]  Christel Baier,et al.  Weak Bisimulation for Fully Probabilistic Processes , 1997, FBT.

[24]  Alexandra Silva,et al.  Trace semantics via determinization , 2012, J. Comput. Syst. Sci..

[25]  R. Street Two constructions on Lax functors , 1972 .

[26]  A. Kock Strong functors and monoidal monads , 1972 .

[27]  Marino Miculan,et al.  GSOS for non-deterministic processes with quantitative aspects , 2014, QAPL.

[28]  Prakash Panangaden,et al.  Labelled Markov Processes , 2009 .

[29]  J. Golan Semirings and their applications , 1999 .

[30]  Nancy A. Lynch,et al.  Probabilistic Simulations for Probabilistic Processes , 1994, Nord. J. Comput..

[31]  Dexter Kozen,et al.  On the Duality of Dynamic Algebras and Kripke Models , 1979, Logic of Programs.

[32]  Luca Aceto,et al.  Resource bisimilarity and graded bisimilarity coincide , 2010, Inf. Process. Lett..

[33]  Marino Miculan,et al.  Structural operational semantics for non-deterministic processes with quantitative aspects , 2014, Theor. Comput. Sci..

[34]  Andrew M. Pitts,et al.  Nominal Sets: Names and Symmetry in Computer Science , 2013 .

[35]  Peter Aczel,et al.  A Final Coalgebra Theorem , 1989, Category Theory and Computer Science.

[36]  Ichiro Hasuo,et al.  Generic Forward and Backward Simulations , 2006, CONCUR.

[37]  Marco Bernardo Weak Markovian Bisimulation Congruences and Exact CTMC-Level Aggregations for Concurrent Processes , 2012, QAPL.

[38]  Dragan Masulovic,et al.  Towards Weak Bisimulation For Coalgebras , 2002, Electron. Notes Theor. Comput. Sci..

[39]  Robin Milner,et al.  Communication and concurrency , 1989, PHI Series in computer science.

[40]  Vladimiro Sassone,et al.  Structural operational semantics for stochastic and weighted transition systems , 2013, Inf. Comput..

[41]  John Power,et al.  The Category Theoretic Understanding of Universal Algebra: Lawvere Theories and Monads , 2007, Computation, Meaning, and Logic.

[42]  Tomasz Brengos On Coalgebras with Internal Moves , 2014, CMCS.

[43]  Fabio Gadducci,et al.  About permutation algebras, (pre)sheaves and named sets , 2006, High. Order Symb. Comput..

[44]  Z. Ésik,et al.  Iteration Theories: The Equational Logic of Iterative Processes , 1993 .

[45]  Marino Miculan,et al.  Weak bisimulations for labelled transition systems weighted over semirings , 2013, ArXiv.

[46]  Alexandra Silva,et al.  Killing epsilons with a dagger: A coalgebraic study of systems with algebraic label structure , 2014, Theor. Comput. Sci..

[47]  A. C. Ehresmann,et al.  CAHIERS DE TOPOLOGIE ET GÉOMÉTRIE DIFFÉRENTIELLE CATÉGORIQUES , 2008 .

[48]  Barbara König,et al.  Coalgebraic Trace Semantics for Continuous Probabilistic Transition Systems , 2013, Log. Methods Comput. Sci..

[49]  Bart Jacobs,et al.  Coalgebraic Trace Semantics for Combined Possibilitistic and Probabilistic Systems , 2008, CMCS.

[50]  Davide Sangiorgi,et al.  The Pi-Calculus - a theory of mobile processes , 2001 .

[51]  Abbas Edalat,et al.  Bisimulation for Labelled Markov Processes , 2002, Inf. Comput..

[52]  Daniele Turi,et al.  Semantics of name and value passing , 2001, Proceedings 16th Annual IEEE Symposium on Logic in Computer Science.

[53]  Rob J. van Glabbeek,et al.  The Linear Time - Branching Time Spectrum II , 1993, CONCUR.

[54]  Yde Venema,et al.  Modal Logic and the Vietoris Functor , 2014 .

[55]  De Barra Introduction to Measure Theory , 1974 .

[56]  Stephen Lack Morita Contexts as Lax Functors , 2014, Appl. Categorical Struct..

[57]  Glynn Winskel,et al.  Distributing probability over non-determinism , 2006, Mathematical Structures in Computer Science.

[58]  Alessandro Aldini,et al.  Weak Markovian Bisimilarity: Abstracting from Prioritized/Weighted Internal Immediate Actions , 2007, ICTCS.

[59]  Jan J. M. M. Rutten,et al.  Universal coalgebra: a theory of systems , 2000, Theor. Comput. Sci..

[60]  Sam Staton Relating Coalgebraic Notions of Bisimulation , 2009, CALCO.

[61]  Alexandra Silva,et al.  Algebra-coalgebra duality in brzozowski's minimization algorithm , 2014, ACM Trans. Comput. Log..

[62]  Giorgio Bacci,et al.  Structural Operational Semantics for Continuous State Probabilistic Processes , 2012, CMCS.

[63]  Edmund Robinson,et al.  Power-domains, modalities and the Vietoris monad , 1986 .