Strongly Nonlinear Lattices

The majority of physical, mechanical and engineering problems dealing with nonlinear processes cannot be solved by the direct methods. The main goal of the researchers is the construction of a simplified model, which can be solved by an approximate method without loosing the physical content.

[1]  V. Arnold,et al.  Mathematical aspects of classical and celestial mechanics , 1997 .

[2]  Leonid I. Manevitch,et al.  Non-stationary resonance dynamics of weakly coupled pendula , 2015, 1508.01148.

[3]  L. I. Manevich,et al.  Limiting phase trajectories and dynamic transitions in nonlinear periodic systems , 2011 .

[4]  Cnrs Ura,et al.  Nonlinear rotating modes: Green's-function solution , 1997 .

[5]  G. M. Zaslavskii,et al.  STOCHASTIC INSTABILITY OF NON-LINEAR OSCILLATIONS , 1972 .

[6]  D. A. Usikov,et al.  Nonlinear Physics: From the Pendulum to Turbulence and Chaos , 1988 .

[7]  Alexander F. Vakakis,et al.  Non-stationary resonance dynamics of a nonlinear sonic vacuum with grounding supports , 2015 .

[8]  S. Takeno,et al.  A Sine-Lattice (Sine-Form Discrete Sine-Gordon) Equation —One-and Two-Kink Solutions and Physical Models— , 1986 .

[9]  Peyrard,et al.  Energy localization in nonlinear lattices. , 1993, Physical review letters.

[10]  Michel Peyrard,et al.  Nonlinear modes in coupled rotator models , 1996 .

[11]  N. Bogolyubov,et al.  Asymptotic Methods in the Theory of Nonlinear Oscillations , 1961 .

[12]  George M. Zaslavsky,et al.  Physics of Chaos in Hamiltonian Systems , 1998 .

[13]  Alexander F. Vakakis,et al.  Normal modes and localization in nonlinear systems , 1996 .

[14]  V V Smirnov,et al.  Limiting phase trajectories and the origin of energy localization in nonlinear oscillatory chains. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[15]  S. Novikov,et al.  Theory of Solitons: The Inverse Scattering Method , 1984 .

[16]  L I Manevitch,et al.  Oscillatory chain with grounding support in conditions of acoustic vacuum , 2015 .

[17]  F. Verhulst,et al.  Averaging Methods in Nonlinear Dynamical Systems , 1985 .

[18]  Yuri S. Kivshar,et al.  The Frenkel-Kontorova Model , 2004 .

[19]  Bishop,et al.  Statistical mechanics of a nonlinear model for DNA denaturation. , 1989, Physical review letters.

[20]  Sebastian Volz,et al.  Long-range interatomic forces can minimize heat transfer: From slowdown of longitudinal optical phonons to thermal conductivity minimum , 2016 .

[21]  L. I. Manevich,et al.  Limiting phase trajectories and thermodynamics of molecular chains , 2010 .

[22]  R. M. Rosenberg,et al.  On Nonlinear Vibrations of Systems with Many Degrees of Freedom , 1966 .

[23]  A. Neishtadt,et al.  Passage through a separatrix in a resonance problem with a slowly-varying parameter , 1975 .

[24]  Philip Rosenau,et al.  Dynamics of nonlinear mass-spring chains near the continuum limit , 1986 .

[25]  Leonid I. Manevitch,et al.  New approach to beating phenomenon in coupled nonlinear oscillatory chains , 2007 .

[26]  Alexander F. Vakakis,et al.  Nonlinear Oscillatory Acoustic Vacuum , 2014, SIAM J. Appl. Math..