Decision Rule Bounds for Two-Stage Stochastic Bilevel Programs

We study two-stage stochastic bilevel programs where the leader chooses a binary here-and-now decision and the follower responds with a continuous wait-and-see decision. Using modern decision rule approximations, we construct lower bounds on an optimistic version and upper bounds on a pessimistic version of the leader's problem. Both bounding problems are equivalent to explicit mixed-integer linear programs that are amenable to efficient numerical solution. The method is illustrated through a facility location problem involving sellers and customers with conflicting preferences.

[1]  Huifu Xu,et al.  An Implicit Programming Approach for a Class of Stochastic Mathematical Programs with Complementarity Constraints , 2006, SIAM J. Optim..

[2]  Johan Löfberg,et al.  YALMIP : a toolbox for modeling and optimization in MATLAB , 2004 .

[3]  Paul I. Barton,et al.  Global solution of bilevel programs with a nonconvex inner program , 2008, J. Glob. Optim..

[4]  Huifu Xu,et al.  An MPCC approach for stochastic Stackelberg–Nash–Cournot equilibrium , 2005 .

[5]  Daniel Kuhn,et al.  A comment on “computational complexity of stochastic programming problems” , 2016, Math. Program..

[6]  Nataliya I. Kalashnykova,et al.  Optimality conditions for bilevel programming problems , 2006 .

[7]  Yongchao Liu,et al.  Entropic Approximation for Mathematical Programs with Robust Equilibrium Constraints , 2014, SIAM J. Optim..

[8]  M. Patriksson,et al.  Stochastic bilevel programming in structural optimization , 2001 .

[9]  Richard L. Church,et al.  A bilevel mixed-integer program for critical infrastructure protection planning , 2008, Comput. Oper. Res..

[10]  W. Wiesemann,et al.  Global Optimisation of Pessimistic Bi-Level Problems , 2008 .

[11]  Charlotte Henkel,et al.  An algorithm for the global resolution of linear stochastic bilevel programs , 2014 .

[12]  Athanasios Migdalas,et al.  A novel approach to Bilevel nonlinear programming , 2007, J. Glob. Optim..

[13]  P. Marcotte,et al.  A bilevel modelling approach to pricing and fare optimisation in the airline industry , 2003 .

[14]  Daniel Ralph,et al.  Using EPECs to Model Bilevel Games in Restructured Electricity Markets with Locational Prices , 2007, Oper. Res..

[15]  S. Dempe A necessary and a sufficient optimality condition for bilevel programming problems , 1992 .

[16]  Efstratios N. Pistikopoulos,et al.  A bilevel programming framework for enterprise-wide process networks under uncertainty , 2004, Comput. Chem. Eng..

[17]  Melvyn Sim,et al.  Distributionally Robust Optimization and Its Tractable Approximations , 2010, Oper. Res..

[18]  M. Dufwenberg Game theory. , 2011, Wiley interdisciplinary reviews. Cognitive science.

[19]  Laurent El Ghaoui,et al.  Robust Optimization , 2021, ICORES.

[20]  Peng Sun,et al.  A Linear Decision-Based Approximation Approach to Stochastic Programming , 2008, Oper. Res..

[21]  Marcia Helena Costa Fampa,et al.  Bilevel optimization applied to strategic pricing in competitive electricity markets , 2008, Comput. Optim. Appl..

[22]  Jan Arild Audestad,et al.  Extending the stochastic programming framework for the modeling of several decision makers: pricing and competition in the telecommunication sector , 2006, Ann. Oper. Res..

[23]  Patrice Marcotte,et al.  Two-stage stochastic bilevel programming over a transportation network , 2013 .

[24]  Alexander Shapiro,et al.  On Complexity of Stochastic Programming Problems , 2005 .

[25]  A. Shapiro Stochastic Programming with Equilibrium Constraints , 2006 .

[26]  Michael Patriksson,et al.  On the Existence of Solutions to Stochastic Mathematical Programs with Equilibrium Constraints , 2004 .

[27]  Berç Rustem,et al.  Parametric global optimisation for bilevel programming , 2007, J. Glob. Optim..

[28]  Berç Rustem,et al.  Pessimistic Bilevel Optimization , 2013, SIAM J. Optim..

[29]  Michael Patriksson,et al.  Stochastic mathematical programs with equilibrium constraints , 1999, Oper. Res. Lett..

[30]  A. Ben-Tal,et al.  Adjustable robust solutions of uncertain linear programs , 2004, Math. Program..

[31]  Daniel Kuhn,et al.  Primal and dual linear decision rules in stochastic and robust optimization , 2011, Math. Program..

[32]  I. Grossmann,et al.  A Bilevel Decomposition Algorithm for Long-Range Planning of Process Networks , 1998 .

[33]  Athanasios Migdalas,et al.  Bilevel programming in traffic planning: Models, methods and challenge , 1995, J. Glob. Optim..

[34]  Stephan Dempe,et al.  Foundations of Bilevel Programming , 2002 .

[35]  Michael Patriksson,et al.  Robust bi-level optimization models in transportation science , 2008, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[36]  Berç Rustem,et al.  A global optimization algorithm for generalized semi-infinite, continuous minimax with coupled constraints and bi-level problems , 2009, J. Glob. Optim..

[37]  Daniel Kuhn,et al.  Generalized decision rule approximations for stochastic programming via liftings , 2014, Mathematical Programming.

[38]  Stephan Dempe,et al.  The bilevel programming problem: reformulations, constraint qualifications and optimality conditions , 2013, Math. Program..

[39]  Martin E. Dyer,et al.  Computational complexity of stochastic programming problems , 2006, Math. Program..

[40]  Laura WynteryJanuary Stochastic Nonlinear Bilevel Programming , 1997 .

[41]  Jerome Bracken,et al.  Mathematical Programs with Optimization Problems in the Constraints , 1973, Oper. Res..