A Survey of Datamining Methods for Sensor Network Bug Diagnosis

This chapter surveys recent debugging tools for sensor networks that are inspired by data mining algorithms. These tools are motivated by the increased complexity and scale of sensor network applications, making it harder to identify root causes of system problems. At a high level, debugging solutions in the domain of sensor networks can be classified according to their goal into two distinct categories; (i) solutions that attempt to localize errors to a single node, component, or code snippet, and (ii) solutions that attempt to identify a global pattern that causes misbehavior to occur. The first category inherits the usual wisdom that problems are often localized. It is unlikely for independent failures to coinside. Hence, while many different trouble symptoms may occur simultaneously, they typically arise from a single misbehaving component such as a failed radio or a crashed node that may, in turn, trigger a cascade of other problems. In contrast, the second category of solutions is motivated by interactive complexity problems. They seek to uncover bugs in networked sensing systems that arise due to unexpected interactions between components. The underlying assumption is that individual components are easier to test, which ensures that they work well in isolation. Therefore, practical software systems seldom fail due to a single poorly-coded component. Rather, they fail due to an unexpected interaction pattern between individually well-behaved components.

[1]  Saurabh Bagchi,et al.  Adaptive correctness monitoring for wireless sensor networks using hierarchical distributed run-time invariant checking , 2007, TAAS.

[2]  Ian H. Witten,et al.  The WEKA data mining software: an update , 2009, SKDD.

[3]  Eunsoo Seo,et al.  Exposing Complex Bug-Triggering Conditions in Distributed Systems via Graph Mining , 2011, 2011 International Conference on Parallel Processing.

[4]  Todd Millstein,et al.  Kairos: a macro-programming system for wireless sensor networks , 2005, SOSP '05.

[5]  Lui Sha,et al.  The Simplex Reference Model: Limiting Fault-Propagation Due to Unreliable Components in Cyber-Physical System Architectures , 2007, RTSS 2007.

[6]  Jian Pei,et al.  Data Mining: Concepts and Techniques, 3rd edition , 2006 .

[7]  Ramesh Govindan,et al.  Reliable and efficient programming abstractions for wireless sensor networks , 2007, PLDI '07.

[8]  Peter Csaba Ölveczky,et al.  Formal modeling, performance estimation, and model checking of wireless sensor network algorithms in Real-Time Maude , 2009, Theor. Comput. Sci..

[9]  Jens Palsberg,et al.  Avrora: scalable sensor network simulation with precise timing , 2005, IPSN 2005. Fourth International Symposium on Information Processing in Sensor Networks, 2005..

[10]  Lui Sha,et al.  A Pattern for Adaptive Behavior in Safety-Critical, Real-Time Middleware , 2006, 2006 27th IEEE International Real-Time Systems Symposium (RTSS'06).

[11]  Giuseppe Di Fatta,et al.  Discriminative pattern mining in software fault detection , 2006, SOQUA '06.

[12]  Kamin Whitehouse,et al.  Declarative tracepoints: a programmable and application independent debugging system for wireless sensor networks , 2008, SenSys '08.

[13]  Daniel T. Larose,et al.  Discovering Knowledge in Data: An Introduction to Data Mining , 2005 .

[14]  David E. Culler,et al.  Design of an application-cooperative management system for wireless sensor networks , 2005, Proceeedings of the Second European Workshop on Wireless Sensor Networks, 2005..

[15]  Jonathan W. Hui,et al.  Marionette: using RPC for interactive development and debugging of wireless embedded networks , 2006, 2006 5th International Conference on Information Processing in Sensor Networks.

[16]  Tarek F. Abdelzaher,et al.  Towards Diagnostic Simulation in Sensor Networks , 2008, DCOSS.

[17]  Klaus Wehrle,et al.  KleeNet: automatic bug hunting in sensor network applications , 2008, SenSys '08.

[18]  Matt Welsh,et al.  MoteLab: a wireless sensor network testbed , 2005, IPSN '05.

[19]  Sang Hyuk Son,et al.  EnviroTrack: towards an environmental computing paradigm for distributed sensor networks , 2004, 24th International Conference on Distributed Computing Systems, 2004. Proceedings..

[20]  Jianyong Wang,et al.  Mining sequential patterns by pattern-growth: the PrefixSpan approach , 2004, IEEE Transactions on Knowledge and Data Engineering.

[21]  Chao Liu,et al.  How Bayesians Debug , 2006, Sixth International Conference on Data Mining (ICDM'06).

[22]  Deborah Estrin,et al.  Sympathy for the sensor network debugger , 2005, SenSys '05.

[23]  Chao Liu,et al.  SOBER: statistical model-based bug localization , 2005, ESEC/FSE-13.

[24]  Akhilesh Tiwari,et al.  A Survey on Frequent Pattern Mining: Current Status and Challenging Issues , 2010 .

[25]  Jun Sun,et al.  Towards a Model Checker for NesC and Wireless Sensor Networks , 2011, ICFEM.

[26]  Heikki Mannila,et al.  Principles of Data Mining , 2001, Undergraduate Topics in Computer Science.

[27]  David E. Culler,et al.  Hood: a neighborhood abstraction for sensor networks , 2004, MobiSys '04.

[28]  Jeff Rose,et al.  MANTIS OS: An Embedded Multithreaded Operating System for Wireless Micro Sensor Platforms , 2005, Mob. Networks Appl..

[29]  Richard Han,et al.  NodeMD: diagnosing node-level faults in remote wireless sensor systems , 2007, MobiSys '07.

[30]  Tian He,et al.  FIND: faulty node detection for wireless sensor networks , 2009, SenSys '09.

[31]  Mohammad Maifi Hasan Khan,et al.  Troubleshooting interactive complexity bugs , 2011 .

[32]  Musa J. Jafar Data Mining with SQL Server 2008 Business Intelligence Development Studio A Hands-on Approach , 2010, AMCIS.

[33]  Jiawei Han,et al.  Finding Symbolic Bug Patterns in Sensor Networks , 2009, DCOSS.

[34]  Sangkyum Kim,et al.  NDPMine: Efficiently Mining Discriminative Numerical Features for Pattern-Based Classification , 2010, ECML/PKDD.

[35]  Yunhao Liu,et al.  Passive diagnosis for wireless sensor networks , 2010, TNET.

[36]  Jun Sun,et al.  Specifying and Verifying Sensor Networks: An Experiment of Formal Methods , 2008, ICFEM.

[37]  Jiawei Han,et al.  Dustminer: troubleshooting interactive complexity bugs in sensor networks , 2008, SenSys '08.

[38]  Kamin Whitehouse,et al.  Clairvoyant: a comprehensive source-level debugger for wireless sensor networks , 2007, SenSys '07.

[39]  Darren D. Cofer,et al.  Pattern-Based Composition and Analysis of Virtually Synchronized Real-Time Distributed Systems , 2012, 2012 IEEE/ACM Third International Conference on Cyber-Physical Systems.

[40]  Kamin Whitehouse,et al.  Stream Feeds - An Abstraction for the World Wide Sensor Web , 2008, IOT.

[41]  Jian Pei,et al.  Mining frequent patterns without candidate generation , 2000, SIGMOD '00.

[42]  Ramesh Govindan,et al.  Deriving State Machines from TinyOS Programs Using Symbolic Execution , 2008, 2008 International Conference on Information Processing in Sensor Networks (ipsn 2008).

[43]  Deborah Estrin,et al.  EmStar: A Software Environment for Developing and Deploying Wireless Sensor Networks , 2004, USENIX ATC, General Track.

[44]  Kamin Whitehouse,et al.  MacroLab: a vector-based macroprogramming framework for cyber-physical systems , 2008, SenSys '08.

[45]  Mohammed J. Zaki,et al.  CHARM: An Efficient Algorithm for Closed Itemset Mining , 2002, SDM.

[46]  Lui Sha,et al.  The System-Level Simplex Architecture for Improved Real-Time Embedded System Safety , 2009, 2009 15th IEEE Real-Time and Embedded Technology and Applications Symposium.

[47]  Chao Liu,et al.  Statistical Debugging: A Hypothesis Testing-Based Approach , 2006, IEEE Transactions on Software Engineering.

[48]  Miklós Maróti,et al.  Software composition and verification for sensor networks , 2005, Sci. Comput. Program..

[49]  Hridesh Rajan,et al.  Slede: a domain-specific verification framework for sensor network security protocol implementations , 2008, WiSec '08.

[50]  David E. Culler,et al.  TinyOS: An Operating System for Sensor Networks , 2005, Ambient Intelligence.

[51]  Ingrid Russell,et al.  An introduction to the WEKA data mining system , 2006, ITICSE '06.

[52]  Tarek F. Abdelzaher,et al.  SNTS: Sensor Network Troubleshooting Suite , 2007, DCOSS.

[53]  A. Karr Exploratory Data Mining and Data Cleaning , 2006 .

[54]  Michael R. Lyu,et al.  Sentomist: Unveiling Transient Sensor Network Bugs via Symptom Mining , 2010, 2010 IEEE 30th International Conference on Distributed Computing Systems.

[55]  Philip Levis,et al.  Collection tree protocol , 2009, SenSys '09.

[56]  Ian H. Witten,et al.  Generating Accurate Rule Sets Without Global Optimization , 1998, ICML.

[57]  Eric Eide,et al.  Efficient memory safety for TinyOS , 2007, SenSys '07.

[58]  Xin Jin,et al.  Diagnostic powertracing for sensor node failure analysis , 2010, IPSN '10.

[59]  Tarek F. Abdelzaher,et al.  2008 International Conference on Information Processing in Sensor Networks A Practical Multi-Channel Media Access Control Protocol for Wireless Sensor Networks ∗ , 2022 .

[60]  Jiawei Han,et al.  Efficient Mining of Closed Repetitive Gapped Subsequences from a Sequence Database , 2009, 2009 IEEE 25th International Conference on Data Engineering.

[61]  Mani B. Srivastava,et al.  A dynamic operating system for sensor nodes , 2005, MobiSys '05.

[62]  Sandeep Kumar,et al.  Mining message sequence graphs , 2011, 2011 33rd International Conference on Software Engineering (ICSE).

[63]  Jiawei Han,et al.  Data Mining: Concepts and Techniques , 2000 .

[64]  Patrick Th. Eugster,et al.  Efficient diagnostic tracing for wireless sensor networks , 2010, SenSys '10.

[65]  Chao Liu,et al.  Mining Control Flow Abnormality for Logic Error Isolation , 2006, SDM.

[66]  Philip S. Yu,et al.  Direct Discriminative Pattern Mining for Effective Classification , 2008, 2008 IEEE 24th International Conference on Data Engineering.

[67]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[68]  Ramakrishnan Srikant,et al.  Fast algorithms for mining association rules , 1998, VLDB 1998.

[69]  D. L. Simms,et al.  Normal Accidents: Living with High-Risk Technologies , 1986 .

[70]  George C. Necula,et al.  Dependent Types for Low-Level Programming , 2007, ESOP.

[71]  Jiawei Han,et al.  Mining Software Specifications: Methodologies and Applications , 2011 .

[72]  Adam Dunkels,et al.  Contiki - a lightweight and flexible operating system for tiny networked sensors , 2004, 29th Annual IEEE International Conference on Local Computer Networks.

[73]  Robert Tibshirani,et al.  The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd Edition , 2001, Springer Series in Statistics.

[74]  Christel Baier,et al.  Principles of Model Checking (Representation and Mind Series) , 2008 .

[75]  Wei Hong,et al.  TinyDB: an acquisitional query processing system for sensor networks , 2005, TODS.

[76]  Matt Welsh,et al.  Programming Sensor Networks Using Abstract Regions , 2004, NSDI.

[77]  ÖlveczkyPeter Csaba,et al.  Semantics and pragmatics of Real-Time Maude , 2007 .

[78]  Marco Caccamo,et al.  Sandboxing Controllers for Cyber-Physical Systems , 2011, 2011 IEEE/ACM Second International Conference on Cyber-Physical Systems.

[79]  Johannes Gehrke,et al.  Mining Very Large Databases , 1999, Computer.

[80]  Philip Levis,et al.  The nesC language: a holistic approach to networked embedded systems , 2003, SIGP.

[81]  Vijay Raghunathan,et al.  HERMES: A Software Architecture for Visibility and Control in Wireless Sensor Network Deployments , 2008, 2008 International Conference on Information Processing in Sensor Networks (ipsn 2008).

[82]  Yannick Chevalier,et al.  A High Level Protocol Specification Language for Industrial Security-Sensitive Protocols , 2004 .

[83]  Tarek F. Abdelzaher,et al.  GreenGPS: a participatory sensing fuel-efficient maps application , 2010, MobiSys '10.

[84]  อนิรุธ สืบสิงห์,et al.  Data Mining Practical Machine Learning Tools and Techniques , 2014 .

[85]  Maurice Bruynooghe,et al.  Predictive data mining in intensive care , 2006 .

[86]  George Candea,et al.  Combining Visualization and Statistical Analysis to Improve Operator Confidence and Efficiency for Failure Detection and Localization , 2005, Second International Conference on Autonomic Computing (ICAC'05).

[87]  Kamin Whitehouse,et al.  Macrodebugging: global views of distributed program execution , 2009, SenSys '09.

[88]  Stanley Bak,et al.  Hybrid Cyberphysical System Verification with Simplex Using Discrete Abstractions , 2010, 2010 16th IEEE Real-Time and Embedded Technology and Applications Symposium.

[89]  Mary Lou Soffa,et al.  Program representations for testing wireless sensor network applications , 2007, DOSTA '07.

[90]  Philip Levis,et al.  Surviving sensor network software faults , 2009, SOSP '09.

[91]  Alan Hartman,et al.  Workshop on Domain specific approaches to software test automation: in conjunction with the 6th ESEC/FSE joint meeting , 2007, FSE 2007.

[92]  Saurabh Bagchi,et al.  Aveksha: a hardware-software approach for non-intrusive tracing and profiling of wireless embedded systems , 2011, SenSys.

[93]  Klaus Wehrle,et al.  KleeNet: discovering insidious interaction bugs in wireless sensor networks before deployment , 2010, IPSN '10.

[94]  David Martin,et al.  Computational Molecular Biology: An Algorithmic Approach , 2001 .

[95]  Peng Li,et al.  T-check: bug finding for sensor networks , 2010, IPSN '10.

[96]  Tarek F. Abdelzaher,et al.  The LiteOS Operating System: Towards Unix-Like Abstractions for Wireless Sensor Networks , 2008, 2008 International Conference on Information Processing in Sensor Networks (ipsn 2008).

[97]  Jiawei Han,et al.  Classification of software behaviors for failure detection: a discriminative pattern mining approach , 2009, KDD.

[98]  Emre Ertin,et al.  Kansei: a testbed for sensing at scale , 2006, 2006 5th International Conference on Information Processing in Sensor Networks.

[99]  Luciano Baresi,et al.  Anquiro: enabling efficient static verification of sensor network software , 2010, SESENA '10.

[100]  Doina Bucur,et al.  Software verification for TinyOS , 2010, IPSN '10.

[101]  Jiawei Han,et al.  Frequent pattern mining: current status and future directions , 2007, Data Mining and Knowledge Discovery.

[102]  Ian H. Witten,et al.  Data mining: practical machine learning tools and techniques, 3rd Edition , 1999 .

[103]  Hiroki Arimura,et al.  LCM: An Efficient Algorithm for Enumerating Frequent Closed Item Sets , 2003, FIMI.