Microstructure and mechanical properties of liquid–phase sintered W@NiFe composite powders

[1]  Zhangjian Zhou,et al.  W–Cu composites with homogenous Cu–network structure prepared by spark plasma sintering using core–shell powders , 2019, International Journal of Refractory Metals and Hard Materials.

[2]  Zhangjian Zhou,et al.  Elaborating the Cu-network structured of the W–Cu composites by sintering intermittently electroplated core-shell powders , 2019, Journal of Alloys and Compounds.

[3]  D. Agrawal,et al.  Structure-property correlations of W-Ni-Fe-Mo heavy alloys consolidated using spark plasma sintering , 2018, Materials Research Express.

[4]  T. K. Nandy,et al.  Effect of alloying addition and microstructural parameters on mechanical properties of 93% tungsten heavy alloys , 2015 .

[5]  S. Qu,et al.  Fabrication, characterization, and mechanical properties of 93W–4.9Ni–2.1Fe/95W–2.8Ni–1.2Fe–1Al2O3 heavy alloy composites , 2015 .

[6]  J. Li,et al.  Preparation of W–Ni–Fe heavy alloys by soft chemical method , 2015 .

[7]  S. Qu,et al.  93W–5.6Ni–1.4Fe heavy alloys with enhanced performance prepared by cyclic spark plasma sintering , 2014 .

[8]  Jie Zhu,et al.  Gradient structure induced by molybdenum in 90W–Ni–Fe heavy alloy , 2014 .

[9]  M. Spasojević,et al.  Structure and magnetic properties of electrodeposited Ni87.3Fe11.3W1.4 alloy , 2014 .

[10]  Y. Y. Li,et al.  Preparation of fine-grained tungsten heavy alloys by spark plasma sintered W–7Ni–3Fe composite powders with different ball milling time , 2013 .

[11]  Jie Zhu,et al.  Fabrication of W–Ni–Fe alloys with gradient structures , 2013 .

[12]  L. Chang,et al.  Effect of electrolyte temperature on composition and phase structure of nanocrystalline Fe–Ni alloys prepared by direct current electrodeposition , 2012 .

[13]  V. Pavlović,et al.  Microstructural properties of electrochemically prepared Ni–Fe–W powders , 2012 .

[14]  Min Song,et al.  Densification behavior of nanocrystalline W-Ni-Fe composite powders prepared by sol-spray drying and hydrogen reduction process , 2010 .

[15]  F. He,et al.  Ni1−xFex (0.1 < x < 0.75) alloy foils prepared from a fluorborate bath using electrochemical deposition , 2009 .

[16]  Juan-Yu Yang,et al.  Structure and properties of electrodeposited Fe–Ni–W alloys with different levels of tungsten content: A comparative study , 2007 .

[17]  X. Y. Zhang,et al.  W/NiFe phase interfacial characteristics of liquid-phase sintered W–Ni–Fe alloy , 2007 .

[18]  R. German,et al.  Densification behavior of tungsten heavy alloy based on master sintering curve concept , 2006 .

[19]  R. German,et al.  Heating rate effects on microstructural properties of liquid phase sintered tungsten heavy alloys , 2004 .

[20]  Ho Jin Ryu,et al.  Microstructure and mechanical properties of mechanically alloyed and solid-state sintered tungsten heavy alloys , 2000 .

[21]  H. Cesiulis,et al.  Electrodeposition and properties of NiW, FeW and FeNiW amorphous alloys. A comparative study , 2000 .

[22]  T. Baykara,et al.  Effects of powder mixing technique and tungsten powder size on the properties of tungsten heavy alloys , 2000 .

[23]  Sunghak Lee,et al.  Effect of surface carburization on dynamic deformation and fracture of tungsten heavy alloys , 1999 .

[24]  R. German,et al.  Gravitational effects on grain coarsening during liquid-phase sintering , 1997 .

[25]  A. Gant,et al.  Microstructural Development and Sintering Kinetics in Ceramic Reinforced High Speed Steel Metal Matrix Composites , 1997 .

[26]  R. German,et al.  The effect of contiguity on growth kinetics in liquid-phase sintering , 1990 .

[27]  R. German,et al.  Microstructural refinement of W-Ni-Fe heavy alloys by alloying additions , 1988 .