Practical quantum random-number generation based on sampling vacuum fluctuations

Random number generation is an enabling technology for fields as varied as Monte Carlo simulations and quantum information science. An important application is a secure quantum key distribution (QKD) system; here, we propose and demonstrate an approach to random number generation that satisfies the specific requirements for QKD. In our scheme, vacuum fluctuations of the electromagnetic-field inside a laser cavity are sampled in a discrete manner in time and amplified by injecting current pulses into the laser. Random numbers can be obtained by interfering the laser pulses with another independent laser operating at the same frequency. Using only off-the-shelf opto-electronics and fibre-optics components at 1.5 $\mu$m wavelength, we experimentally demonstrate the generation of high-quality random bits at a rate of up to 1.5 GHz. Our results show the potential of the new scheme for practical information processing applications.

[1]  M Jofre,et al.  True random numbers from amplified quantum vacuum. , 2011, Optics express.

[2]  Hong Guo,et al.  Truly random number generation based on measurement of phase noise of a laser. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[3]  V. Scarani,et al.  Device-independent security of quantum cryptography against collective attacks. , 2007, Physical review letters.

[4]  Gilles Brassard,et al.  Experimental loss-tolerant quantum coin flipping , 2011, Nature communications.

[5]  Brenda Chng,et al.  Random numbers from vacuum fluctuations , 2016, 1602.08249.

[6]  N. Gisin,et al.  Experimental demonstration of quantum secret sharing , 2001 .

[7]  Michael A Wayne,et al.  Low-bias high-speed quantum random number generator via shaped optical pulses. , 2010, Optics express.

[8]  V. Buzek,et al.  Quantum secret sharing , 1998, quant-ph/9806063.

[9]  H. Weinfurter,et al.  High speed optical quantum random number generation. , 2010, Optics express.

[10]  N. Metropolis,et al.  The Monte Carlo method. , 1949 .

[11]  H. Bechmann-Pasquinucci,et al.  Quantum cryptography , 2001, quant-ph/0101098.

[12]  Christoph Simon,et al.  Practical private database queries based on a quantum-key-distribution protocol , 2010, 1002.4360.

[13]  James F. Dynes,et al.  Efficient and robust quantum random number generation by photon number detection , 2015 .

[14]  H. Lo,et al.  High-speed quantum random number generation by measuring phase noise of a single-mode laser. , 2010, Optics letters.

[15]  Nicolas Gisin,et al.  Quantum Random Number Generation on a Mobile Phone , 2014, 1405.0435.

[16]  Hugo Zbinden,et al.  Self-testing quantum random number generator. , 2014, Physical review letters.

[17]  Liuguo Yin,et al.  Implementation and security analysis of practical quantum secure direct communication , 2018, Light: Science & Applications.

[18]  Fuguo Deng,et al.  Reply to ``Comment on `Secure direct communication with a quantum one-time-pad' '' , 2004, quant-ph/0405177.

[19]  C. Abellán,et al.  Generation of Fresh and Pure Random Numbers for Loophole-Free Bell Tests. , 2015, Physical review letters.

[20]  Hoi-Kwong Lo,et al.  Effect of source tampering in the security of quantum cryptography , 2015, 1508.05258.

[21]  Gilles Brassard,et al.  Quantum cryptography: Public key distribution and coin tossing , 2014, Theor. Comput. Sci..

[22]  A. W. Sharpe,et al.  A High Speed, Post-Processing Free, Quantum Random Number Generator , 2008, ArXiv.

[23]  H. Schmidt Quantum‐Mechanical Random‐Number Generator , 1970 .

[24]  R. Penty,et al.  Quantum key distribution without detector vulnerabilities using optically seeded lasers , 2015, Nature Photonics.

[25]  Xiongfeng Ma,et al.  Ultrafast quantum random number generation based on quantum phase fluctuations. , 2011, Optics express.

[26]  Noam Nisan,et al.  Extracting Randomness: A Survey and New Constructions , 1999, J. Comput. Syst. Sci..

[27]  A. Uchida,et al.  Fast physical random bit generation with chaotic semiconductor lasers , 2008 .

[28]  M. Wahl,et al.  An ultrafast quantum random number generator with provably bounded output bias based on photon arrival time measurements , 2011 .

[29]  Bernard P. Zajac Applied cryptography: Protocols, algorithms, and source code in C , 1994 .

[30]  M. Curty,et al.  Secure quantum key distribution , 2014, Nature Photonics.

[31]  G. Long,et al.  Theoretically efficient high-capacity quantum-key-distribution scheme , 2000, quant-ph/0012056.

[32]  N. Gisin,et al.  Quantum Communication , 2007, quant-ph/0703255.

[33]  He Xu,et al.  Postprocessing for quantum random number generators: entropy evaluation and randomness extraction , 2012, ArXiv.

[34]  Stefano Pironio,et al.  Random numbers certified by Bell’s theorem , 2009, Nature.

[35]  R. Dong,et al.  A generator for unique quantum random numbers based on vacuum states , 2010 .

[36]  Xiao Yuan,et al.  Source-Independent Quantum Random Number Generation , 2015, Physical Review X.

[37]  Zhu Cao,et al.  Quantum random number generation , 2015, npj Quantum Information.

[38]  Miguel Herrero-Collantes,et al.  Quantum random number generators , 2016, 1604.03304.

[39]  Waldimar Amaya,et al.  Quantum entropy source on an InP photonic integrated circuit for random number generation , 2016, 1609.03255.

[40]  Qiao-Yan Wen,et al.  Quantum private query: A new kind of practical quantum cryptographic protocol , 2019, Science China Physics, Mechanics & Astronomy.

[41]  Yang Liu,et al.  The generation of 68 Gbps quantum random number by measuring laser phase fluctuations. , 2015, The Review of scientific instruments.

[42]  Fuguo Deng,et al.  Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block , 2003, quant-ph/0308173.

[43]  T. Symul,et al.  Real time demonstration of high bitrate quantum random number generation with coherent laser light , 2011, 1107.4438.

[44]  S. Wehner,et al.  An experimental implementation of oblivious transfer in the noisy storage model , 2012, Nature Communications.

[45]  Yang Liu,et al.  68 Gbps quantum random number generation by measuring laser phase fluctuations , 2015, ArXiv.

[46]  J. F. Dynes,et al.  Robust random number generation using steady-state emission of gain-switched laser diodes , 2014, 1407.0933.

[47]  Alireza Marandi,et al.  All-optical quantum random bit generation from intrinsically binary phase of parametric oscillators. , 2012, Optics express.

[48]  W. Liu,et al.  A secret key distribution technique based on semiconductor superlattice chaos devices. , 2018, Science bulletin.

[49]  Hugo Zbinden,et al.  Quantum Random Number Generation for 1.25-GHz Quantum Key Distribution Systems , 2015, Journal of Lightwave Technology.

[50]  K. Lau Gain switching of semiconductor injection lasers , 1988 .

[51]  Gui-Lu Long,et al.  Scheme for a quantum random number generator , 2006 .

[52]  H. Weinfurter,et al.  A fast and compact quantum random number generator , 1999, quant-ph/9912118.

[53]  Elaine B. Barker,et al.  A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications , 2000 .

[54]  J Capmany,et al.  Ultra-fast quantum randomness generation by accelerated phase diffusion in a pulsed laser diode. , 2014, Optics express.