Closed-Loop Control of Transition by Local Dynamic Surface Modification

Direct numerical simulations (DNSs) were carried out in order reproduce the generation and control of transition on a flat plate by means of local dynamic surface modification. The configurations and flow conditions duplicate those of previous numerical investigations, and are similar to an experimental arrangement, which employed piezoelectrically driven actuators to impart small amplitude local deformation of the plate surface. In those studies, one actuator was located in the upstream plate region, and oscillated at the most unstable frequency of 250 Hz in order to generate small disturbances, which amplified Tollmien–Schlichting instabilities. A second actuator placed downstream, was then oscillated at the same frequency, but with appropriate amplitudes in order to mitigate disturbance growth and delay the evolution of transition. Prior simulations employed an empirical process to determine optimal values of the control parameters. In the current effort, this process is replaced with a closed-loop control law. Numerical solutions are obtained to the two-dimensional and three-dimensional compressible Navier–Stokes equations, utilizing a high-fidelity numerical scheme and an implicit time-marching approach. Local surface modification of the plate is enforced via grid deformation. Results of the simulations are presented, and features of the flowfields are described. Comparisons are made between results obtained with the two control methods, and effectiveness of the closed-loop approach is evaluated.

[1]  Christer Fureby,et al.  Large-Eddy Simulation: Current Capabilities, Recommended Practices, and Future Research , 2009 .

[2]  Cameron Tropea,et al.  Characterization of Tollmien-Schlichting Wave Damping by DBD Plasma Actuators Using Phase-Locked PIV , 2012 .

[3]  Jamal A. Masad Secondary instabilities of boundary layers , 1990 .

[4]  Miguel R. Visbal,et al.  High-Order-Accurate Methods for Complex Unsteady Subsonic Flows , 1999 .

[5]  S. Lele Compact finite difference schemes with spectral-like resolution , 1992 .

[6]  M. Y. Hussaini,et al.  Active Control of Instabilities in Laminar Boundary Layers---Overview and Concept Validation , 1996 .

[7]  Miguel R. Visbal,et al.  Investigation of Transition Delay by Dynamic Surface Deformation , 2019, Journal of Fluids Engineering.

[8]  Michael Gaster,et al.  On the generation of spatially growing waves in a boundary layer , 1965, Journal of Fluid Mechanics.

[9]  John P. Steinbrenner,et al.  The GRIDGEN 3D Multiple Block Grid Generation System. Volume 2. User's Manual. , 1991 .

[10]  Miguel R. Visbal,et al.  Numerical Simulation of Excrescence Generated Transition , 2013 .

[11]  Ulrich Rist,et al.  Control of Tollmien–Schlichting instabilities by finite distributed wall actuation , 2011 .

[12]  H. Schlichting Boundary Layer Theory , 1955 .

[13]  Miguel R. Visbal,et al.  Numerical simulation of delta-wing roll , 1998 .

[14]  Cameron Tropea,et al.  Experimental damping of boundary-layer oscillations using DBD plasma actuators , 2009 .

[15]  A.G. Alleyne,et al.  A survey of iterative learning control , 2006, IEEE Control Systems.

[16]  Miguel R. Visbal,et al.  Large-Eddy Simulation of Plasma-Based Turbulent Boundary-Layer Separation Control , 2010 .

[17]  M. Visbal VERY HIGH-ORDER SPATIALLY IMPLICIT SCHEMES FOR COMPUTATIONAL ACOUSTICS ON CURVILINEAR MESHES , 2001 .

[18]  C. Tropea,et al.  Attenuation of Tollmien–Schlichting Waves Using Plasma Actuator Vortex Generators , 2015 .

[19]  Miguel R. Visbal,et al.  Application of Large-Eddy Simulation to Supersonic Compression Ramps , 2002 .

[20]  T. Herbert Secondary Instability of Boundary Layers , 1988 .

[21]  Roger Temam,et al.  DNS-based predictive control of turbulence: an optimal benchmark for feedback algorithms , 2001, Journal of Fluid Mechanics.

[22]  Scott E. Sherer,et al.  High-order compact finite-difference methods on general overset grids , 2005 .

[23]  Dan S. Henningson,et al.  Output Feedback Control of Blasius Flow with Leading Edge Using Plasma Actuator , 2013 .

[24]  Miguel R. Visbal,et al.  High-Order Schemes for Navier-Stokes Equations: Algorithm and Implementation Into FDL3DI , 1998 .

[25]  M. Kotsonis,et al.  Numerical Study on Control of Tollmien-Schlichting Waves Using Plasma Actuators , 2011 .

[26]  M. Visbal,et al.  Numerical Simulation of Separation Control for Transitional Highly Loaded Low-Pressure Turbines , 2004 .

[27]  Miguel R. Visbal,et al.  Large Eddy Simulation of Plasma-Based Control Strategies for Bluff Body Flow , 2008 .

[28]  Dan S. Henningson,et al.  Transition delay in a boundary layer flow using active control , 2013, Journal of Fluid Mechanics.

[29]  C. Tropea,et al.  Transition Delay Using DBD Plasma Actuators in Direct Frequency Mode , 2012 .

[30]  O. Wehrmann Tollmien‐Schlichting Waves under the Influence of a Flexible Wall , 1965 .

[31]  Robert King,et al.  Development of active wave cancellation using DBD plasma actuators for in-flight transition control , 2012 .

[32]  Cameron Tropea,et al.  Active cancellation of artificially introduced Tollmien–Schlichting waves using plasma actuators , 2008 .

[33]  W. Nitsche,et al.  Active cancellation of Tollmien–Schlichting instabilities on a wing using multi-channel sensor actuator systems , 2003 .

[34]  Miguel R. Visbal,et al.  Direct Numerical Simulations of Flow Past an Array of Distributed Roughness Elements , 2007 .

[35]  Gordon Erlebacher,et al.  Active Control of Boundary-Layer Instabilities: Use of Sensors and Spectral Controller , 1995 .

[36]  Miguel R. Visbal,et al.  Large-Eddy Simulation of Supersonic Cavity Flowfields Including Flow Control , 2003 .

[37]  A. Jameson,et al.  Numerical solution of the Euler equations by finite volume methods using Runge Kutta time stepping schemes , 1981 .

[38]  D. Gaitonde,et al.  Practical aspects of high-order accurate finite-volume schemes for electromagnetics , 1997 .

[39]  Jens H. M. Fransson,et al.  On the generation of steady streamwise streaks in flat-plate boundary layers , 2012, Journal of Fluid Mechanics.

[40]  R. F. Warming,et al.  An Implicit Factored Scheme for the Compressible Navier-Stokes Equations , 1977 .

[41]  Michael Gaster,et al.  A note on the relation between temporally-increasing and spatially-increasing disturbances in hydrodynamic stability , 1962, Journal of Fluid Mechanics.

[42]  Dan S. Henningson,et al.  Feedback control of instabilities in the two-dimensional Blasius boundary layer : The role of sensors and actuators , 2013 .

[43]  H. Liepmann,et al.  Control of laminar-instability waves using a new technique , 1982, Journal of Fluid Mechanics.

[44]  P. Meliga,et al.  Dynamics and Control of Global Instabilities in Open-Flows: A Linearized Approach , 2010 .

[45]  C. Tropea,et al.  Experimental transition delay using glow-discharge plasma actuators , 2007 .

[46]  Cameron Tropea,et al.  Measuring Tollmien–Schlichting waves using phase-averaged particle image velocimetry , 2012 .

[47]  Miguel R. Visbal,et al.  Direct Numerical Simulation of Transition Control via Local Dynamic Surface Modification , 2019, AIAA Journal.

[48]  Andrew S. W. Thomas The control of boundary-layer transition using a wave-superposition principle , 1983, Journal of Fluid Mechanics.

[49]  T. Pulliam,et al.  A diagonal form of an implicit approximate-factorization algorithm , 1981 .

[50]  Yury S. Kachanov,et al.  PHYSICAL MECHANISMS OF LAMINAR-BOUNDARY-LAYER TRANSITION , 1994 .

[51]  H. Liepmann,et al.  Active control of laminar-turbulent transition , 1982, Journal of Fluid Mechanics.

[52]  Miguel R. Visbal,et al.  VERY HIGH-ORDER SPATIALLY IMPLICIT SCHEMES FOR COMPUTATIONAL ACOUSTICS ON CURVILINEAR MESHES , 2001 .

[53]  R. Penrose A Generalized inverse for matrices , 1955 .

[54]  R. Jordinson,et al.  The flat plate boundary layer. Part 1. Numerical integration of the Orr–-Sommerfeld equation , 1970, Journal of Fluid Mechanics.

[55]  Dan S. Henningson,et al.  Control of Instabilities in an Unswept Wing Boundary Layer , 2018 .

[56]  M. Amitay,et al.  Identification and mitigation of T-S waves using localized dynamic surface modification , 2016 .