A phase-field model for fatigue crack growth

Abstract A phase-field model is presented for the study of fatigue crack growth. A crack growth viscosity parameter is introduced into the standard phase-field model for brittle fracture to account for rate- or cycle-dependent crack growth phenomena. A modified J-integral is developed to demonstrate how the phase-field approach can be used to generate Paris-law type crack growth rates. In order to model more general crack growth versus applied loading behaviors that are not a single simple Paris-law, steady-state finite element calculations are performed to calibrate fits of the phase-field model to measured crack growth rates found in da/dN versus ΔK curves. Transient time- or cycle-dependent calculations are performed and compared to experimental measurements on samples where crack turning is induced by the presence of a hole in the vicinity of the crack. A three-dimensional example with turning of the crack front is also computed illustrating the capabilities of the phase-field approach for complex crack paths.

[1]  B. Bourdin,et al.  Numerical experiments in revisited brittle fracture , 2000 .

[2]  Christian Miehe,et al.  Thermodynamically consistent phase‐field models of fracture: Variational principles and multi‐field FE implementations , 2010 .

[3]  Luca Cardamone,et al.  A numerical model for masonry-like structures , 2010 .

[4]  Stefano Vidoli,et al.  A phenomenological approach to fatigue with a variational phase-field model: The one-dimensional case , 2017 .

[5]  P. Paris A rational analytic theory of fatigue , 1961 .

[6]  Walter Noll,et al.  The thermodynamics of elastic materials with heat conduction and viscosity , 1963 .

[7]  Mary F. Wheeler,et al.  A Phase-Field Method for Propagating Fluid-Filled Fractures Coupled to a Surrounding Porous Medium , 2015, Multiscale Model. Simul..

[8]  L. Lorenzis,et al.  Phase-field modeling of ductile fracture , 2015, Computational Mechanics.

[9]  M. Torres,et al.  Describing fatigue crack growth and load ratio effects in Al 2524 T3 alloy with an enhanced exponential model , 2012 .

[10]  Patrick E. Farrell,et al.  Linear and nonlinear solvers for variational phase‐field models of brittle fracture , 2015, 1511.08463.

[11]  Christian Miehe,et al.  Phase field modeling of fracture in rubbery polymers. Part I: Finite elasticity coupled with brittle failure , 2014 .

[12]  C. Landis,et al.  Phase-field modeling of hydraulic fracture , 2016 .

[13]  Blaise Bourdin,et al.  A variational hydraulic fracturing model coupled to a reservoir simulator , 2016 .

[14]  Christian Miehe,et al.  Continuum phase field modeling of dynamic fracture: variational principles and staggered FE implementation , 2012, International Journal of Fracture.

[15]  B. Bourdin Numerical implementation of the variational formulation for quasi-static brittle fracture , 2007 .

[16]  J. Wiebesiek,et al.  Comparison of predictions by mode II or mode III criteria on crack front twisting in three or four point bending experiments , 2008 .

[17]  J. Newman,et al.  Fatigue and crack-growth analyses on 7075-T651 aluminum alloy coupons under constant- and variable-amplitude loading , 2014 .

[18]  Irene Arias,et al.  Phase-field modeling of crack propagation in piezoelectric and ferroelectric materials with different electromechanical crack conditions , 2012 .

[19]  Cv Clemens Verhoosel,et al.  A phase-field description of dynamic brittle fracture , 2012 .

[20]  Christopher J. Larsen,et al.  A time-discrete model for dynamic fracture based on crack regularization , 2011 .

[21]  A. Karma,et al.  Phase-field model of mode III dynamic fracture. , 2001, Physical review letters.

[22]  T. Hughes,et al.  Isogeometric analysis of the Cahn–Hilliard phase-field model , 2008 .

[23]  Gianpietro Del Piero,et al.  Constitutive equation and compatibility of the external loads for linear elastic masonry-like materials , 1989 .

[24]  J. Rice,et al.  Elementary engineering fracture mechanics , 1974 .

[25]  S. Dinda,et al.  Correlation and prediction of fatigue crack growth for different R-ratios using Kmax and ΔK+ parameters , 2004 .

[26]  Gilles A. Francfort,et al.  Revisiting brittle fracture as an energy minimization problem , 1998 .

[27]  Gianni Royer-Carfagni,et al.  Regularized variational theories of fracture: A unified approach , 2010 .

[28]  W. Elber The Significance of Fatigue Crack Closure , 1971 .

[29]  Thomas J. R. Hughes,et al.  A phase-field formulation for fracture in ductile materials: Finite deformation balance law derivation, plastic degradation, and stress triaxiality effects , 2016 .

[30]  Jean-Jacques Marigo,et al.  Crack nucleation in variational phase-field models of brittle fracture , 2018 .

[31]  M. Gurtin Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance , 1996 .

[32]  J. Rice A path-independent integral and the approximate analysis of strain , 1968 .

[33]  Jintai Chung,et al.  A Time Integration Algorithm for Structural Dynamics With Improved Numerical Dissipation: The Generalized-α Method , 1993 .

[34]  Blaise Bourdin,et al.  A Variational Approach to the Numerical Simulation of Hydraulic Fracturing , 2012 .

[35]  M. Bittencourt,et al.  A non-isothermal thermodynamically consistent phase field framework for structural damage and fatigue , 2016 .

[37]  Michael J. Borden,et al.  A phase-field model for fracture in piezoelectric ceramics , 2013, International Journal of Fracture.