Stability of Multicluster Synchronization

A system of many coupled oscillators on a network can show multicluster synchronization. We obtain existence conditions and stability bounds for such a multicluster synchronization. When the oscillators are identical, we obtain the interesting result that network structure alone can cause multicluster synchronization to emerge even when all the other parameters are the same. We also study occurrence of multicluster synchronization when two different types of oscillators are coupled.

[1]  G. Rangarajan,et al.  Stability of synchronized chaos in coupled dynamical systems , 2002, nlin/0201037.

[2]  Cecily Swinburne Identification of network motifs in lung disease , 2007 .

[3]  S. Boccaletti,et al.  Synchronization of chaotic systems , 2001 .

[4]  Changsong Zhou,et al.  Hierarchical organization unveiled by functional connectivity in complex brain networks. , 2006, Physical review letters.

[5]  Yoshiki Kuramoto,et al.  Chemical Oscillations, Waves, and Turbulence , 1984, Springer Series in Synergetics.

[6]  R. E. Amritkar,et al.  Self-organized and driven phase synchronization in coupled maps. , 2002, Physical review letters.

[7]  J. Kurths,et al.  Hierarchical synchronization in complex networks with heterogeneous degrees. , 2006, Chaos.

[8]  Marc Timme,et al.  Topological speed limits to network synchronization. , 2003, Physical review letters.

[9]  Jurgen Kurths,et al.  Synchronization in complex networks , 2008, 0805.2976.

[10]  Sarika Jalan,et al.  Coupled dynamics on networks , 2005 .

[11]  Jürgen Kurths,et al.  Synchronization: Phase locking and frequency entrainment , 2001 .

[12]  N. Rulkov,et al.  Robustness of Synchronized Chaotic Oscillations , 1997 .

[13]  Sarika Jalan,et al.  Synchronized clusters in coupled map networks. II. Stability analysis. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[14]  I. Stewart,et al.  Bubbling of attractors and synchronisation of chaotic oscillators , 1994 .

[15]  Alex Arenas,et al.  Synchronization reveals topological scales in complex networks. , 2006, Physical review letters.

[16]  G. Rangarajan,et al.  General stability analysis of synchronized dynamics in coupled systems. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[17]  Sarika Jalan,et al.  Synchronized clusters in coupled map networks. I. Numerical studies. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[18]  Changsong Zhou,et al.  Universality in the synchronization of weighted random networks. , 2006, Physical review letters.

[19]  Martin Hasler,et al.  Synchronization of bursting neurons: what matters in the network topology. , 2005, Physical review letters.

[20]  S Boccaletti,et al.  Identification of network modules by optimization of ratio association. , 2006, Chaos.

[21]  Gauthier,et al.  Intermittent Loss of Synchronization in Coupled Chaotic Oscillators: Toward a New Criterion for High-Quality Synchronization. , 1996, Physical review letters.

[22]  Adilson E Motter,et al.  Heterogeneity in oscillator networks: are smaller worlds easier to synchronize? , 2003, Physical review letters.

[23]  Mauricio Barahona,et al.  Synchronization in small-world systems. , 2002, Physical review letters.

[24]  Govindan Rangarajan,et al.  Spatially synchronous extinction of species under external forcing. , 2006, Physical review letters.

[25]  T. Carroll,et al.  MASTER STABILITY FUNCTIONS FOR SYNCHRONIZED COUPLED SYSTEMS , 1999 .

[26]  Faming Liang,et al.  Statistical and Computational Inverse Problems , 2006, Technometrics.

[27]  E Oh,et al.  Modular synchronization in complex networks. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.