The Multiobjective Traveling Salesman Problem: A Survey and a New Approach

The traveling salesman problem (TSP) is a challenging problem in combinatorial optimization. In this paper we consider the multiobjective TSP for which the aim is to obtain or to approximate the set of efficient solutions. In a first step, we classify and describe briefly the existing works, that are essentially based on the use of metaheuristics. In a second step, we propose a new method, called two-phase Pareto local search. In the first phase of this method, an initial population composed of an approximation to the extreme supported efficient solutions is generated. The second phase is a Pareto local search applied to all solutions of the initial population. The method does not use any numerical parameter. We show that using the combination of these two techniques—good initial population generation and Pareto local search—gives, on the majority of the instances tested, better results than state-of-the-art algorithms.

[1]  I. Melamed,et al.  The linear convolution of criteria in the bicriteria traveling salesman problem , 1997 .

[2]  Xavier Gandibleux,et al.  Metaheuristics for Multiobjective Optimisation , 2004, Lecture Notes in Economics and Mathematical Systems.

[3]  Andrzej Jaszkiewicz,et al.  Pareto memetic algorithm with path relinking for bi-objective traveling salesperson problem , 2009, Eur. J. Oper. Res..

[4]  Piotr Czyzżak,et al.  Pareto simulated annealing—a metaheuristic technique for multiple‐objective combinatorial optimization , 1998 .

[5]  Eckart Zitzler,et al.  Evolutionary algorithms for multiobjective optimization: methods and applications , 1999 .

[6]  Nicolas Jozefowiez,et al.  Multi-objective vehicle routing problems , 2008, Eur. J. Oper. Res..

[7]  Pedro Larrañaga,et al.  Genetic Algorithms for the Travelling Salesman Problem: A Review of Representations and Operators , 1999, Artificial Intelligence Review.

[8]  Funda Samanlioglu,et al.  A memetic random-key genetic algorithm for a symmetric multi-objective traveling salesman problem , 2008, Comput. Ind. Eng..

[9]  Keld Helsgaun,et al.  An effective implementation of the Lin-Kernighan traveling salesman heuristic , 2000, Eur. J. Oper. Res..

[10]  Michael Pilegaard Hansen Use of Substitute Scalarizing Functions to Guide a Local Search Based Heuristic: The Case of moTSP , 2000, J. Heuristics.

[11]  李幼升,et al.  Ph , 1989 .

[12]  Weiqi Li Finding Pareto-Optimal Set by Merging Attractors for a Bi-objective Traveling Salesmen Problem , 2005, EMO.

[13]  Gerhard Reinelt,et al.  TSPLIB - A Traveling Salesman Problem Library , 1991, INFORMS J. Comput..

[14]  Andrzej Jaszkiewicz,et al.  On the performance of multiple-objective genetic local search on the 0/1 knapsack problem - a comparative experiment , 2002, IEEE Trans. Evol. Comput..

[15]  Fred W. Glover,et al.  Multi-objective Meta-heuristics for the Traveling Salesman Problem with Profits , 2008, J. Math. Model. Algorithms.

[16]  Jacques Teghem,et al.  Two-phase Pareto local search for the biobjective traveling salesman problem , 2010, J. Heuristics.

[17]  Thomas Stützle,et al.  Design and analysis of stochastic local search for the multiobjective traveling salesman problem , 2009, Comput. Oper. Res..

[18]  Thomas Stützle,et al.  Pareto Local Optimum Sets in the Biobjective Traveling Salesman Problem: An Experimental Study , 2004, Metaheuristics for Multiobjective Optimisation.

[19]  M. Hansen,et al.  Evaluating the quality of approximations to the non-dominated set , 1998 .

[20]  Knut Richter,et al.  Solving a multiobjective traveling salesman problem by dynamic programming , 1982 .

[21]  E. L. Ulungu,et al.  MOSA method: a tool for solving multiobjective combinatorial optimization problems , 1999 .

[22]  Pierre Hansen,et al.  Bicriterion Path Problems , 1980 .

[23]  R. S. Laundy,et al.  Multiple Criteria Optimisation: Theory, Computation and Application , 1989 .

[24]  Forschungsinstitut für Diskrete Chained Lin-Kernighan for Large Traveling Salesman Problems , 2003 .

[25]  Abraham P. Punnen,et al.  The traveling salesman problem and its variations , 2007 .

[26]  C. Ribeiro,et al.  Essays and Surveys in Metaheuristics , 2002, Operations Research/Computer Science Interfaces Series.

[27]  Funda Samanlioglu,et al.  A hybrid random-key genetic algorithm for a symmetric travelling salesman problem , 2007 .

[28]  Bernd Freisleben,et al.  Memetic Algorithms for the Traveling Salesman Problem , 2002, Complex Syst..

[29]  Marco Laumanns,et al.  Why Quality Assessment Of Multiobjective Optimizers Is Difficult , 2002, GECCO.

[30]  Hisao Ishibuchi,et al.  Hybrid Evolutionary Algorithms , 2007 .

[31]  Bo Huang,et al.  Bi-level GA and GIS for Multi-objective TSP Route Planning , 2006 .

[32]  F. Glover,et al.  Handbook of Metaheuristics , 2019, International Series in Operations Research & Management Science.

[33]  J. K. Lenstra,et al.  Local Search in Combinatorial Optimisation. , 1997 .

[34]  Thomas Stützle,et al.  Stochastic Local Search Algorithms for Multiobjective Combinatorial Optimization , 2006, Handbook of Approximation Algorithms and Metaheuristics.

[35]  Matthieu Basseur Design of cooperative algorithms for multi-objective optimization: application to the flow-shop scheduling problem , 2006, 4OR.

[36]  Michel Gendreau,et al.  An exact epsilon-constraint method for bi-objective combinatorial optimization problems: Application to the Traveling Salesman Problem with Profits , 2009, Eur. J. Oper. Res..

[37]  Kaisa Miettinen,et al.  Nonlinear multiobjective optimization , 1998, International series in operations research and management science.

[38]  M. Goodchild,et al.  The Multiobjective Vending Problem: A Generalization of the Travelling Salesman Problem , 1988 .

[39]  Rajeev Kumar,et al.  Pareto Evolutionary Algorithm Hybridized with Local Search for Biobjective TSP , 2007 .

[40]  Marco Laumanns,et al.  Performance assessment of multiobjective optimizers: an analysis and review , 2003, IEEE Trans. Evol. Comput..

[41]  Horst W. Hamacher,et al.  On spanning tree problems with multiple objectives , 1994, Ann. Oper. Res..

[42]  S. Holm A Simple Sequentially Rejective Multiple Test Procedure , 1979 .

[43]  Taïcir Loukil,et al.  Multiple crossover genetic algorithm for the multiobjective traveling salesman problem , 2010, Electron. Notes Discret. Math..

[44]  Andrzej Jaszkiewicz,et al.  Speed-up techniques for solving large-scale biobjective TSP , 2010, Comput. Oper. Res..

[45]  Xavier Gandibleux,et al.  The Supported Solutions Used as a Genetic Information in a Population Heuristics , 2001, EMO.

[46]  Michael Pilegaard Hansen,et al.  A Study of Global Convexity for a Multiple Objective Travelling Salesman Problem , 2002 .

[47]  Lishan Kang,et al.  A New MOEA for Multi-objective TSP and Its Convergence Property Analysis , 2003, EMO.

[48]  Anthony Przybylski,et al.  Two phase algorithms for the bi-objective assignment problem , 2008, Eur. J. Oper. Res..

[49]  Xavier Gandibleux,et al.  Multiobjective Combinatorial Optimization — Theory, Methodology, and Applications , 2003 .

[50]  E. L. Ulungu,et al.  Multi‐objective combinatorial optimization problems: A survey , 1994 .

[51]  Evripidis Bampis,et al.  A Dynasearch Neighborhood for the Bicriteria Traveling Salesman Problem , 2004, Metaheuristics for Multiobjective Optimisation.

[52]  David S. Johnson,et al.  Experimental Analysis of Heuristics for the STSP , 2007 .

[53]  Matthias Ehrgott,et al.  Bound sets for biobjective combinatorial optimization problems , 2007, Comput. Oper. Res..

[54]  Y. Aneja,et al.  BICRITERIA TRANSPORTATION PROBLEM , 1979 .

[55]  Thomas Stützle,et al.  A Two-Phase Local Search for the Biobjective Traveling Salesman Problem , 2003, EMO.

[56]  Francisco Herrera,et al.  A taxonomy and an empirical analysis of multiple objective ant colony optimization algorithms for the bi-criteria TSP , 2007, Eur. J. Oper. Res..

[57]  A. Warburton,et al.  Approximation Methods for Multiple Criteria Travelling Salesman Problems , 1987 .

[58]  Gerald S. Rogers,et al.  Mathematical Statistics: A Decision Theoretic Approach , 1967 .

[59]  David S. Johnson,et al.  The Traveling Salesman Problem: A Case Study in Local Optimization , 2008 .

[60]  Evripidis Bampis,et al.  Approximating the Pareto Curve with Local Search for the Bicriteria TSP (1, 2) Problem , 2003, FCT.

[61]  Bodo Manthey,et al.  Approximation Algorithms for Multi-criteria Traveling Salesman Problems , 2006, WAOA.

[62]  Brian W. Kernighan,et al.  An Effective Heuristic Algorithm for the Traveling-Salesman Problem , 1973, Oper. Res..