Long-term potentiation--a decade of progress?

Long-term potentiation of synaptic transmission in the hippocampus is the leading experimental model for the synaptic changes that may underlie learning and memory. This review presents a current understanding of the molecular mechanisms of this long-lasting increase in synaptic strength and describes a simple model that unifies much of the data that previously were viewed as contradictory.

[1]  Petter Laake,et al.  Different modes of expression of AMPA and NMDA receptors in hippocampal synapses , 1999, Nature Neuroscience.

[2]  J. Lübke,et al.  Importance of AMPA receptors for hippocampal synaptic plasticity but not for spatial learning. , 1999, Science.

[3]  K. Svoboda,et al.  Rapid spine delivery and redistribution of AMPA receptors after synaptic NMDA receptor activation. , 1999, Science.

[4]  F. Engert,et al.  Dendritic spine changes associated with hippocampal long-term synaptic plasticity , 1999, Nature.

[5]  Mark von Zastrow,et al.  Rapid redistribution of glutamate receptors contributes to long-term depression in hippocampal cultures , 1999, Nature Neuroscience.

[6]  T. Jay,et al.  Long-term potentiation in the dentate gyrus is not linked to increased extracellular glutamate concentration. , 1999, Journal of neurophysiology.

[7]  K. Svoboda,et al.  Rapid dendritic morphogenesis in CA1 hippocampal dendrites induced by synaptic activity. , 1999, Science.

[8]  T. Soderling,et al.  Ca2+/calmodulin-kinase II enhances channel conductance of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate type glutamate receptors. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[9]  K. Svoboda,et al.  Synaptic [Ca2+] Intracellular Stores Spill Their Guts , 1999, Neuron.

[10]  R. Nicoll,et al.  Hippocampal Long-Term Potentiation Preserves the Fidelity of Postsynaptic Responses to Presynaptic Bursts , 1999, The Journal of Neuroscience.

[11]  R. Zucker,et al.  Selective induction of LTP and LTD by postsynaptic [Ca2+]i elevation. , 1999, Journal of neurophysiology.

[12]  R. Anwyl Metabotropic glutamate receptors: electrophysiological properties and role in plasticity , 1999, Brain Research Reviews.

[13]  H. Cline,et al.  Topographic maps: Developing roles of synaptic plasticity , 1998, Current Biology.

[14]  Z. Mainen,et al.  Use-dependent AMPA receptor block in mice lacking GluR2 suggests postsynaptic site for LTP expression , 1998, Nature Neuroscience.

[15]  Mark F Bear,et al.  NMDA Induces Long-Term Synaptic Depression and Dephosphorylation of the GluR1 Subunit of AMPA Receptors in Hippocampus , 1998, Neuron.

[16]  R. Nicoll,et al.  Effects of PKA and PKC on miniature excitatory postsynaptic currents in CA1 pyramidal cells. , 1998, Journal of neurophysiology.

[17]  M. Salter Src, N-methyl-D-aspartate (NMDA) receptors, and synaptic plasticity. , 1998, Biochemical pharmacology.

[18]  J. Sweatt,et al.  Protected‐Site Phosphorylation of Protein Kinase C in Hippocampal Long‐Term Potentiation , 1998, Journal of neurochemistry.

[19]  Peter Somogyi,et al.  Cell Type and Pathway Dependence of Synaptic AMPA Receptor Number and Variability in the Hippocampus , 1998, Neuron.

[20]  A. Craig,et al.  Activity and Synaptic Receptor Targeting the Long View , 1998, Neuron.

[21]  Dwight E Bergles,et al.  Glutamate Release Monitored with Astrocyte Transporter Currents during LTP , 1998, Neuron.

[22]  G. Collingridge,et al.  NSF Binding to GluR2 Regulates Synaptic Transmission , 1998, Neuron.

[23]  Andreas Lüthi,et al.  Modulation of AMPA receptor unitary conductance by synaptic activity , 1998, Nature.

[24]  S. Shenolikar,et al.  Gating of CaMKII by cAMP-regulated protein phosphatase activity during LTP. , 1998, Science.

[25]  R. Huganir,et al.  Molecular mechanisms of glutamate receptor clustering at excitatory synapses , 1998, Current Opinion in Neurobiology.

[26]  B. Gustafsson,et al.  Short‐term facilitation evoked during brief afferent tetani is not altered by long‐term potentiation in the guinea‐pig hippocampal CA1 region , 1998, The Journal of physiology.

[27]  J. Roder,et al.  Src activation in the induction of long-term potentiation in CA1 hippocampal neurons. , 1998, Science.

[28]  R. Nicoll,et al.  Postsynaptic membrane fusion and long-term potentiation. , 1998, Science.

[29]  D. Kullmann,et al.  Extrasynaptic glutamate spillover in the hippocampus: evidence and implications , 1998, Trends in Neurosciences.

[30]  R. Huganir,et al.  Phosphorylation of the α-Amino-3-hydroxy-5-methylisoxazole4-propionic Acid Receptor GluR1 Subunit by Calcium/ Calmodulin-dependent Kinase II* , 1997, The Journal of Biological Chemistry.

[31]  R. Nicoll,et al.  Synaptic Refractory Period Provides a Measure of Probability of Release in the Hippocampus , 1997, Neuron.

[32]  P. Milner,et al.  Preconceptions and prerequisites: Understanding the function of synaptic plasticity will also depend on a better systems-level understanding of the multiple types of memory , 1997, Behavioral and Brain Sciences.

[33]  F. Engert,et al.  Synapse specificity of long-term potentiation breaks down at short distances , 1997, Nature.

[34]  Roberto Malinow,et al.  Learning Mechanisms: The Case for CaM-KII , 1997, Science.

[35]  T. Soderling,et al.  Regulatory phosphorylation of AMPA-type glutamate receptors by CaM-KII during long-term potentiation. , 1997, Science.

[36]  Mary B. Kennedy,et al.  The postsynaptic density at glutamatergic synapses , 1997, Trends in Neurosciences.

[37]  C. Stevens,et al.  Spatial Learning and Memory: The Beginning of a Dream , 1996, Cell.

[38]  J. David Sweatt,et al.  Activation of p42 Mitogen-activated Protein Kinase in Hippocampal Long Term Potentiation* , 1996, The Journal of Biological Chemistry.

[39]  H. Eichenbaum,et al.  Learning from LTP: a comment on recent attempts to identify cellular and molecular mechanisms of memory. , 1996, Learning & memory.

[40]  C. Zorumski,et al.  Platelet-activating factor as a potential retrograde messenger. , 1996, Journal of lipid mediators and cell signalling.

[41]  Dimitri M Kullmann,et al.  LTP of AMPA and NMDA Receptor–Mediated Signals: Evidence for Presynaptic Expression and Extrasynaptic Glutamate Spill-Over , 1996, Neuron.

[42]  Sabina Hrabetova,et al.  Bidirectional Regulation of Protein Kinase Mζ in the Maintenance of Long-Term Potentiation and Long-Term Depression , 1996, The Journal of Neuroscience.

[43]  J. Isaac,et al.  Long-term potentiation at single fiber inputs to hippocampal CA1 pyramidal cells. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[44]  B. Gustafsson,et al.  Long-term potentiation and paired-pulse facilitation in the hippocampal CA1 region. , 1996, Neuroreport.

[45]  Stephen J. Smith,et al.  Potentiation of Evoked Vesicle Turnover at Individually Resolved Synaptic Boutons , 1996, Neuron.

[46]  R. Huganir,et al.  Characterization of Multiple Phosphorylation Sites on the AMPA Receptor GluR1 Subunit , 1996, Neuron.

[47]  Z. Mainen,et al.  Long-Term Potentiation in the CA1 Hippocampus , 1996, Science.

[48]  R. Nicoll,et al.  Bidirectional Control of Quantal Size by Synaptic Activity in the Hippocampus , 1996, Science.

[49]  R. Nicoll,et al.  Calcium/calmodulin-dependent kinase II and long-term potentiation enhance synaptic transmission by the same mechanism. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[50]  Wolf Singer,et al.  Development and Plasticity of Cortical Processing Architectures , 1995, Science.

[51]  S. Siegelbaum,et al.  Regulation of hippocampal transmitter release during development and long-term potentiation. , 1995, Science.

[52]  R. Nicoll,et al.  Contrasting properties of two forms of long-term potentiation in the hippocampus , 1995, Nature.

[53]  W. Denk,et al.  Dendritic spines as basic functional units of neuronal integration , 1995, Nature.

[54]  R. Tsien,et al.  Presynaptic component of long-term potentiation visualized at individual hippocampal synapses. , 1995, Science.

[55]  R. Malinow,et al.  Activation of postsynaptically silent synapses during pairing-induced LTP in CA1 region of hippocampal slice , 1995, Nature.

[56]  J. Jack,et al.  Synaptic plasticity: hippocampal LTP , 1995, Current Opinion in Neurobiology.

[57]  Y. Ben-Ari,et al.  Role of glutamate metabotropic receptors in long-term potentiation in the hippocampus , 1995 .

[58]  Dominique Muller,et al.  Increased Phosphorylation of Ca/Calmodulin-dependent Protein Kinase II and Its Endogenous Substrates in the Induction of Long Term Potentiation (*) , 1995, The Journal of Biological Chemistry.

[59]  J. Lisman The CaM kinase II hypothesis for the storage of synaptic memory , 1994, Trends in Neurosciences.

[60]  R. Malinow,et al.  Potentiated transmission and prevention of further LTP by increased CaMKII activity in postsynaptic hippocampal slice neurons. , 1994, Science.

[61]  T J Teyler,et al.  Multideterminant role of calcium in hippocampal synaptic plasticity , 1994, Hippocampus.

[62]  C. Stevens,et al.  Changes in reliability of synaptic function as a mechanism for plasticity , 1994, Nature.

[63]  R. Nicoll,et al.  Long-term potentiation: evidence against an increase in transmitter release probability in the CA1 region of the hippocampus. , 1994, Science.

[64]  U. Kuhnt,et al.  Interaction between paired-pulse facilitation and long-term potentiation in area ca1 of guinea-pig hippocampal slices: Application of quantal analysis , 1994, Neuroscience.

[65]  Robert C. Malenka,et al.  Synaptic plasticity in the hippocampus: LTP and LTD , 1994, Cell.

[66]  M. Bear,et al.  Synaptic plasticity: LTP and LTD , 1994, Current Opinion in Neurobiology.

[67]  R. Nicoll,et al.  A rise in postsynaptic Ca 2+ potentiates miniature excitatory postsynaptic currents and AMPA responses in hippocampal neurons , 1994, Neuron.

[68]  D. Madison,et al.  Locally distributed synaptic potentiation in the hippocampus. , 1994, Science.

[69]  R. Nicoll,et al.  NMDA-receptor-dependent synaptic plasticity: multiple forms and mechanisms , 1993, Trends in Neurosciences.

[70]  R. Nicoll,et al.  Evidence for all‐or‐none regulation of neurotransmitter release: implications for long‐term potentiation. , 1993, The Journal of physiology.

[71]  R. Nicoll,et al.  The role of Ca2+ entry via synaptically activated NMDA receptors in the induction of long-term potentiation , 1993, Neuron.

[72]  R. Nicoll,et al.  Modulation of synaptic transmission and long-term potentiation: effects on paired pulse facilitation and EPSC variance in the CA1 region of the hippocampus. , 1993, Journal of neurophysiology.

[73]  J. H. Schwartz Cognitive kinases. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[74]  G. Collingridge,et al.  Characterization of Ca2+ signals induced in hippocampal CA1 neurones by the synaptic activation of NMDA receptors. , 1993, The Journal of physiology.

[75]  M. Bear,et al.  Common forms of synaptic plasticity in the hippocampus and neocortex in vitro. , 1993, Science.

[76]  Tim V. P. Bliss,et al.  The search for retrograde messengers in long-term potentiation , 1993 .

[77]  Mark F. Bear,et al.  Neocortical long-term potentiation , 1993, Current Opinion in Neurobiology.

[78]  C. Shatz,et al.  Developmental mechanisms that generate precise patterns of neuronal connectivity , 1993, Cell.

[79]  T. Bliss,et al.  A synaptic model of memory: long-term potentiation in the hippocampus , 1993, Nature.

[80]  H. Wigström,et al.  The Relative Contribution of NMDA Receptor Channels in the Expression of Long‐term Potentiation in the Hippocampal CA1 Region , 1992, The European journal of neuroscience.

[81]  R. Malenka,et al.  Temporal limits on the rise in postsynaptic calcium required for the induction of long-term potentiation , 1992, Neuron.

[82]  R. Nicoll,et al.  Postsynaptic contribution to long-term potentiation revealed by the analysis of miniature synaptic currents , 1992, Nature.

[83]  C. Shatz Impulse activity and the patterning of connections during cns development , 1990, Neuron.

[84]  D. Tank,et al.  Postsynaptic NMDA receptor-mediated calcium accumulation in hippocampal CAl pyramidal cell dendrites , 1990, Nature.

[85]  M. Roisin,et al.  Long-term potentiation in the hippocampus of the anaesthetized rat is not associated with a sustained enhanced release of endogenous excitatory amino acids , 1989, Neuroscience.

[86]  R. Tsien,et al.  Inhibition of postsynaptic PKC or CaMKII blocks induction but not expression of LTP. , 1989, Science.

[87]  R. Nicoll,et al.  An essential role for postsynaptic calmodulin and protein kinase activity in long-term potentiation , 1989, Nature.

[88]  D. Linden,et al.  The role of protein kinase C in long-term potentiation: a testable model , 1989, Brain Research Reviews.

[89]  Graham L. Collingridge,et al.  Temporally distinct pre- and post-synaptic mechanisms maintain long-term potentiation , 1989, Nature.

[90]  Gary Lynch,et al.  Evidence that changes in presynaptic calcium currents are not responsible for long-term potentiation in hippocampus , 1989, Brain Research.

[91]  H. Wigström,et al.  Physiological mechanisms underlying long-term potentiation , 1988, Trends in Neurosciences.

[92]  G. Lynch,et al.  Contributions of quisqualate and NMDA receptors to the induction and expression of LTP. , 1988, Science.

[93]  R. Nicoll,et al.  A persistent postsynaptic modification mediates long-term potentiation in the hippocampus , 1988, Neuron.

[94]  R S Zucker,et al.  Postsynaptic calcium is sufficient for potentiation of hippocampal synaptic transmission. , 1988, Science.

[95]  R. Nicoll,et al.  The current excitement in long term potentiation , 1988, Neuron.

[96]  L. Cooper,et al.  A physiological basis for a theory of synapse modification. , 1987, Science.

[97]  G. Lynch,et al.  The biochemistry of memory: a new and specific hypothesis. , 1984, Science.

[98]  T. Bliss,et al.  Long‐lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path , 1973, The Journal of physiology.

[99]  J. Partridge,et al.  Selective acquisition of AMPA receptors over postnatal development suggests a molecular basis for silent synapses , 1999, Nature Neuroscience.

[100]  R. Hawkins,et al.  Nitric oxide as a retrograde messenger during long-term potentiation in hippocampus. , 1998, Progress in brain research.

[101]  H. Schulman,et al.  The multifunctional calcium/calmodulin-dependent protein kinase: from form to function. , 1995, Annual review of physiology.

[102]  D. Madison,et al.  Nitric oxide and synaptic function. , 1994, Annual review of neuroscience.

[103]  P G Nelson,et al.  Activity-dependent development of the vertebrate nervous system. , 1992, International review of neurobiology.

[104]  R. Nicoll,et al.  Mechanisms underlying long-term potentiation of synaptic transmission. , 1991, Annual review of neuroscience.

[105]  M. Kennedy,et al.  Structure and regulation of type II calcium/calmodulin-dependent protein kinase in central nervous system neurons. , 1990, Cold Spring Harbor symposia on quantitative biology.

[106]  M. Constantine-Paton,et al.  Patterned activity, synaptic convergence, and the NMDA receptor in developing visual pathways. , 1990, Annual review of neuroscience.

[107]  P. Andersen,et al.  Protein kinase C injection into hippocampal pyramidal cells elicits features of long term potentiation , 1987, Nature.

[108]  T. Teyler,et al.  Long-term potentiation. , 1987, Annual review of neuroscience.

[109]  G. Collingridge,et al.  The antagonism of amino acid‐induced excitations of rat hippocampal CA1 neurones in vitro. , 1983, The Journal of physiology.