Time-Dependent Orthogonal Polynomials and Theory of Soliton (統計物理学の展開と応用--多様性の中の類似性(研究会報告))
暂无分享,去创建一个
[1] K. Sogo. A way from string to soliton ―introduction of KP coordinate to string amplitudes― , 1987 .
[2] F. Dyson. A Brownian‐Motion Model for the Eigenvalues of a Random Matrix , 1962 .
[3] M. Jimbo,et al. Monodromy perserving deformation of linear ordinary differential equations with rational coefficients. II , 1981 .
[4] L. A. Takhtadzhan,et al. THE QUANTUM METHOD OF THE INVERSE PROBLEM AND THE HEISENBERG XYZ MODEL , 1979 .
[5] Ramani,et al. Do integrable mappings have the Painlevé property? , 1991, Physical review letters.
[6] A. Newell,et al. Monodromy- and spectrum-preserving deformations I , 1980 .
[7] R. Hirota. Discrete Two-Dimensional Toda Molecule Equation , 1987 .
[8] Thermodynamics of Particle Systems Related to Random Matrices , 1991 .
[9] Athanassios S. Fokas,et al. The isomonodromy approach to matric models in 2D quantum gravity , 1992 .
[10] D. Gross,et al. Nonperturbative two-dimensional quantum gravity. , 1990, Physical review letters.