Decay-Based DRAM PUFs in Commodity Devices

A Physically Unclonable Function (PUF) is a unique and stable physical characteristic of a piece of hardware, which emerges due to variations in the hardware fabrication processes. Prior works have demonstrated that PUFs are a promising cryptographic primitive that can enable secure key storage, hardware-based device authentication and identification. So far, most PUF constructions have required an addition of new hardware or an FPGA implementation for their operation. Recently, intrinsic PUFs, which can be found in commodity devices, have been investigated. Unfortunately, most of them suffer from the drawback that they can only be accessed at boot time. This paper focuses on a new class of run-time accessible, decay-based, intrinsic DRAM PUFs in commercial off-the-shelf systems, which requires no additional hardware or FPGAs. In order to enable secure key storage using DRAM PUFs, this work presents a new Helper Data System (HDS) specifically tailored to the properties of the decay process inherent to DRAM cells. The decay-based DRAM PUF and the new HDS are evaluated on commodity off-the-shelf devices to demonstrate their practicality. Furthermore, a novel lightweight protocol is presented that allows for mutual authentication.

[1]  Martin Wattenberg,et al.  A fuzzy commitment scheme , 1999, CCS '99.

[2]  Lejla Batina,et al.  RFID-Tags for Anti-counterfeiting , 2006, CT-RSA.

[3]  Amir Rahmati,et al.  Probable cause: The deanonymizing effects of approximate DRAM , 2015, 2015 ACM/IEEE 42nd Annual International Symposium on Computer Architecture (ISCA).

[4]  Onur Mutlu,et al.  An experimental study of data retention behavior in modern DRAM devices: implications for retention time profiling mechanisms , 2013, ISCA.

[5]  Stefan Katzenbeisser,et al.  Converse PUF-Based Authentication , 2012, TRUST.

[6]  G. Edward Suh,et al.  Extracting Device Fingerprints from Flash Memory by Exploiting Physical Variations , 2011, TRUST.

[7]  Tolga Arul,et al.  Lightweight Anti-counterfeiting Solution for Low-End Commodity Hardware Using Inherent PUFs , 2014, TRUST.

[8]  Boris Skoric,et al.  The Spammed Code Offset Method , 2014, IEEE Transactions on Information Forensics and Security.

[9]  Srinivas Devadas,et al.  Delay-based circuit authentication and applications , 2003, SAC '03.

[10]  Jorge Guajardo,et al.  Brand and IP protection with physical unclonable functions , 2008, 2008 IEEE International Symposium on Circuits and Systems.

[11]  Larry Carter,et al.  Universal Classes of Hash Functions , 1979, J. Comput. Syst. Sci..

[12]  Boris Skoric,et al.  A trivial debiasing scheme for Helper Data Systems , 2018, Journal of Cryptographic Engineering.

[13]  Frank Sehnke,et al.  On the Foundations of Physical Unclonable Functions , 2009, IACR Cryptol. ePrint Arch..

[14]  Stefan Katzenbeisser,et al.  On the Systematic Drift of Physically Unclonable Functions Due to Aging , 2015, TrustED@CCS.

[15]  Mario Konijnenburg,et al.  Evaluation of 90nm 6T-SRAM as Physical Unclonable Function for secure key generation in wireless sensor nodes , 2011, 2011 IEEE International Symposium of Circuits and Systems (ISCAS).

[16]  Roel Maes,et al.  Countering the effects of silicon aging on SRAM PUFs , 2014, 2014 IEEE International Symposium on Hardware-Oriented Security and Trust (HOST).

[17]  G. Edward Suh,et al.  Flash Memory for Ubiquitous Hardware Security Functions: True Random Number Generation and Device Fingerprints , 2012, 2012 IEEE Symposium on Security and Privacy.

[18]  Grant Hernandez,et al.  Smart Nest Thermostat A Smart Spy in Your Home , 2014 .

[19]  Ahmad-Reza Sadeghi,et al.  PUFatt: Embedded platform attestation based on novel processor-based PUFs , 2014, 2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC).

[20]  Stefan Katzenbeisser,et al.  PUFs: Myth, Fact or Busted? A Security Evaluation of Physically Unclonable Functions (PUFs) Cast in Silicon , 2012, CHES.

[21]  Ingrid Verbauwhede,et al.  Experimental evaluation of Physically Unclonable Functions in 65 nm CMOS , 2012, 2012 Proceedings of the ESSCIRC (ESSCIRC).

[22]  Arnab Raha,et al.  D-PUF: An intrinsically reconfigurable DRAM PUF for device authentication in embedded systems , 2016, 2016 International Conference on Compliers, Architectures, and Sythesis of Embedded Systems (CASES).

[23]  Srinivas Devadas,et al.  Secure and robust error correction for physical unclonable functions , 2010, IEEE Design & Test of Computers.

[24]  Rafail Ostrovsky,et al.  Fuzzy Extractors: How to Generate Strong Keys from Biometrics and Other Noisy Data , 2004, SIAM J. Comput..

[25]  Jean-Paul M. G. Linnartz,et al.  New Shielding Functions to Enhance Privacy and Prevent Misuse of Biometric Templates , 2003, AVBPA.

[26]  Zhenhua Zhang,et al.  A Trustworthy Key Generation Prototype Based on DDR3 PUF for Wireless Sensor Networks , 2014, 2014 International Symposium on Computer, Consumer and Control.

[27]  Christos A. Papachristou,et al.  A robust authentication methodology using physically unclonable functions in DRAM arrays , 2015, 2015 Design, Automation & Test in Europe Conference & Exhibition (DATE).

[28]  Subramanian S. Iyer,et al.  Field Tolerant Dynamic Intrinsic Chip ID Using 32 nm High-K/Metal Gate SOI Embedded DRAM , 2013, IEEE Journal of Solid-State Circuits.

[29]  G. Edward Suh,et al.  Physical Unclonable Functions for Device Authentication and Secret Key Generation , 2007, 2007 44th ACM/IEEE Design Automation Conference.

[30]  P. Jaccard,et al.  Etude comparative de la distribution florale dans une portion des Alpes et des Jura , 1901 .

[31]  Feng Lin,et al.  DRAM Circuit Design: Fundamental and High-Speed Topics , 2007 .

[32]  Xavier Boyen,et al.  Reusable cryptographic fuzzy extractors , 2004, CCS '04.

[33]  Jorge Guajardo,et al.  FPGA Intrinsic PUFs and Their Use for IP Protection , 2007, CHES.

[34]  Stefan Katzenbeisser,et al.  Run-Time Accessible DRAM PUFs in Commodity Devices , 2016, CHES.

[35]  Radu Teodorescu,et al.  Authenticache: Harnessing cache ECC for system authentication , 2015, 2015 48th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO).

[36]  Carl A. Waldspurger,et al.  Memory resource management in VMware ESX server , 2002, OSDI '02.

[37]  Pim Tuyls,et al.  Secret key generation from classical physics : Physical Uncloneable Functions (Chapter 6.4) , 2006 .

[38]  Stefan Savage,et al.  Fast and Vulnerable: A Story of Telematic Failures , 2015, WOOT.

[39]  Ahmad-Reza Sadeghi,et al.  Short paper: lightweight remote attestation using physical functions , 2011, WiSec '11.

[40]  Gilles Brassard,et al.  Practical Quantum Oblivious Transfer , 1991, CRYPTO.

[41]  Douglas R. Stinson,et al.  Universal hashing and authentication codes , 1991, Des. Codes Cryptogr..

[42]  Subramanian S. Iyer,et al.  A Self-Authenticating Chip Architecture Using an Intrinsic Fingerprint of Embedded DRAM , 2013, IEEE Journal of Solid-State Circuits.

[43]  Stefan Katzenbeisser,et al.  PUF-Based Software Protection for Low-End Embedded Devices , 2015, TRUST.

[44]  Stefan Katzenbeisser,et al.  Intrinsic Rowhammer PUFs: Leveraging the Rowhammer effect for improved security , 2017, 2017 IEEE International Symposium on Hardware Oriented Security and Trust (HOST).

[45]  John Viega,et al.  The State of Embedded-Device Security (Spoiler Alert: It's Bad) , 2012, IEEE Security & Privacy.

[46]  Boris Skoric,et al.  Secure Key Storage with PUFs , 2007 .

[47]  Akhilesh Tyagi,et al.  Characterizing Composite User-Device Touchscreen Physical Unclonable Functions (PUFs) for Mobile Device Authentication , 2015, TrustED@CCS.

[48]  Chris Fallin,et al.  Flipping bits in memory without accessing them: An experimental study of DRAM disturbance errors , 2014, 2014 ACM/IEEE 41st International Symposium on Computer Architecture (ISCA).

[49]  Frans M. J. Willems,et al.  Secure Key Generation from Biased PUFs , 2015, CHES.

[50]  Eduardo Pinheiro,et al.  DRAM errors in the wild: a large-scale field study , 2009, SIGMETRICS '09.

[51]  Fatemeh Tehranipoor,et al.  Investigation of DRAM PUFs reliability under device accelerated aging effects , 2017, 2017 IEEE International Symposium on Circuits and Systems (ISCAS).

[52]  Nima Karimian,et al.  DRAM-Based Intrinsic Physically Unclonable Functions for System-Level Security and Authentication , 2017, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[53]  Ahmad-Reza Sadeghi,et al.  Efficient Helper Data Key Extractor on FPGAs , 2008, CHES.

[54]  Hubert Kaeslin,et al.  Dynamic memory-based physically unclonable function for the generation of unique identifiers and true random numbers , 2014, 2014 IEEE International Symposium on Circuits and Systems (ISCAS).

[55]  Fatemeh Tehranipoor,et al.  DRAM based Intrinsic Physical Unclonable Functions for System Level Security , 2015, ACM Great Lakes Symposium on VLSI.

[56]  Geert Jan Schrijen,et al.  Comparative analysis of SRAM memories used as PUF primitives , 2012, 2012 Design, Automation & Test in Europe Conference & Exhibition (DATE).