An Error Estimation Framework for Many‐Light Rendering

The popularity of many‐light rendering, which converts complex global illumination computations into a simple sum of the illumination from virtual point lights (VPLs), for predictive rendering has increased in recent years. A huge number of VPLs are usually required for predictive rendering at the cost of extensive computational time. While previous methods can achieve significant speedup by clustering VPLs, none of these previous methods can estimate the total errors due to clustering. This drawback imposes on users tedious trial and error processes to obtain rendered images with reliable accuracy. In this paper, we propose an error estimation framework for many‐light rendering. Our method transforms VPL clustering into stratified sampling combined with confidence intervals, which enables the user to estimate the error due to clustering without the costly computing required to sum the illumination from all the VPLs. Our estimation framework is capable of handling arbitrary BRDFs and is accelerated by using visibility caching, both of which make our method more practical. The experimental results demonstrate that our method can estimate the error much more accurately than the previous clustering method.

[1]  Adam Arbree,et al.  Multidimensional lightcuts , 2006, ACM Trans. Graph..

[2]  Alexander Keller,et al.  A Hierarchical Automatic Stopping Condition for Monte Carlo Global Illumination , 2010 .

[3]  Adam Arbree,et al.  To appear in the ACM SIGGRAPH conference proceedings Lightcuts: A Scalable Approach to Illumination , 2022 .

[4]  Kei Iwasaki,et al.  Adaptive Importance Caching for Many-Light Rendering , 2015, J. WSCG.

[5]  Adam Arbree,et al.  Scalable Realistic Rendering with Many‐Light Methods , 2014, Eurographics.

[6]  Rui Wang,et al.  Bidirectional Importance Sampling for Unstructured Direct Illumination , 2009, Comput. Graph. Forum.

[7]  Toshiya Hachisuka,et al.  Robust Image Denoising Using a Virtual Flash Image for Monte Carlo Ray Tracing , 2013, Comput. Graph. Forum.

[8]  Hans-Peter Seidel,et al.  Imperfect shadow maps for efficient computation of indirect illumination , 2008, SIGGRAPH Asia '08.

[9]  Pramook Khungurn,et al.  Bidirectional lightcuts , 2012, ACM Trans. Graph..

[10]  Adam Arbree,et al.  Optimizing realistic rendering with many-light methods , 2012, SIGGRAPH '12.

[11]  Anton Kaplanyan,et al.  Recent advances in light transport simulation: theory & practice , 2013, SIGGRAPH '13.

[12]  Werner Purgathofer,et al.  A statistical method for adaptive stochastic sampling , 1986, Comput. Graph..

[13]  Greg Humphreys,et al.  Physically Based Rendering, Second Edition: From Theory To Implementation , 2010 .

[14]  Kavita Bala,et al.  Matrix row-column sampling for the many-light problem , 2007, ACM Trans. Graph..

[15]  Nancy Argüelles,et al.  Author ' s , 2008 .

[16]  Mateu Sbert,et al.  Refinement Criteria Based on f-Divergences , 2003, Rendering Techniques.

[17]  Henrik Wann Jensen,et al.  Adaptive Smpling and Bias Estimation in Path Tracing , 1997, Rendering Techniques.

[18]  Kun Zhou,et al.  GPU-based out-of-core many-lights rendering , 2013, ACM Trans. Graph..

[19]  Steven K. Thompson,et al.  Sampling: Thompson/Sampling 3E , 2012 .

[20]  Yung-Yu Chuang,et al.  VisibilityCluster: Average Directional Visibility for Many-Light Rendering , 2013, IEEE Transactions on Visualization and Computer Graphics.

[21]  Toshiya Hachisuka,et al.  A progressive error estimation framework for photon density estimation , 2010, ACM Trans. Graph..

[22]  Tomas Akenine-Möller,et al.  Exploiting Visibility Correlation in Direct Illumination , 2008, Comput. Graph. Forum.

[23]  Philipp Slusallek,et al.  Importance Caching for Complex Illumination , 2012, Comput. Graph. Forum.

[24]  Philipp Slusallek,et al.  Adaptive Quantization Visibility Caching , 2013, Comput. Graph. Forum.

[25]  Fabio Pellacini,et al.  LightSlice: matrix slice sampling for the many-lights problem , 2011, ACM Trans. Graph..

[26]  Philipp Slusallek,et al.  Combining global and local virtual lights for detailed glossy illumination , 2010, SIGGRAPH 2010.

[27]  Hujun Bao,et al.  A matrix sampling-and-recovery approach for many-lights rendering , 2015, ACM Trans. Graph..

[28]  Carsten Dachsbacher,et al.  Progressive Visibility Caching for Fast Indirect Illumination , 2013, VMV.

[29]  Yusuke Tokuyoshi,et al.  Virtual spherical gaussian lights for real-time glossy indirect illumination , 2014, SIGGRAPH ASIA Technical Briefs.

[30]  Bruce Walter,et al.  Virtual spherical lights for many-light rendering of glossy scenes , 2009, ACM Trans. Graph..

[31]  M. Ruiz Espejo Sampling , 2013, Encyclopedic Dictionary of Archaeology.

[32]  Carsten Dachsbacher,et al.  Rich‐VPLs for Improving the Versatility of Many‐Light Methods , 2015, Comput. Graph. Forum.

[33]  Alexander Keller,et al.  Instant radiosity , 1997, SIGGRAPH.