Drug binding by calmodulin: crystal structure of a calmodulin-trifluoperazine complex.

The crystal structure of calmodulin (CaM) bound to trifluoperazine (TFP) has been determined and refined to a resolution of 2.45 A. Only one TFP is bound to CaM, but that is sufficient to cause distortion of the central alpha-helix and juxtaposition of the N- and C-terminal domains similar to that seen in CaM-polypeptide complexes. The drug makes extensive contacts with residues in the C-terminal domain of CaM but only a few contacts with one residue in the N-terminal domain. The structure suggests that substrate binding to the C-terminal domain is sufficient to cause the conformational changes in calmodulin that lead to activation of its targets.

[1]  T. A. Jones,et al.  A graphics model building and refinement system for macromolecules , 1978 .

[2]  A. Means,et al.  Three amino acid substitutions in domain I of calmodulin prevent the activation of chicken smooth muscle myosin light chain kinase. , 1991, The Journal of biological chemistry.

[3]  A. Means,et al.  The calmodulin binding domain of chicken smooth muscle myosin light chain kinase contains a pseudosubstrate sequence. , 1987, The Journal of biological chemistry.

[4]  C. Bugg,et al.  Structure of calmodulin refined at 2.2 A resolution. , 1988, Journal of molecular biology.

[5]  L. Delbaere,et al.  Preliminary X-ray data for the calmodulin/trifluoperazine complex. , 1984, Journal of molecular biology.

[6]  H. Vogel,et al.  Calcium‐dependent hydrophobic interaction chromatography of calmodulin, troponin C and their proteolytic fragments , 1983 .

[7]  Barry C. Finzel,et al.  The use of an imaging proportional counter in macromolecular crystallography , 1987 .

[8]  L. Delbaere,et al.  Trifluoperazine-induced conformational change in Ca2+-calmodulin , 1994, Nature Structural Biology.

[9]  H. Vogel,et al.  Metal ion and drug binding to proteolytic fragments of calmodulin: proteolytic, cadmium-113, and proton nuclear magnetic resonance studies. , 1984, Biochemistry.

[10]  T. Vorherr,et al.  Small-angle X-ray scattering study of calmodulin bound to two peptides corresponding to parts of the calmodulin-binding domain of the plasma membrane Ca2+ pump. , 1991, Biochemistry.

[11]  B. Kemp,et al.  Insights into autoregulation from the crystal structure of twitchin kinase , 1994, Nature.

[12]  J. Sack,et al.  CHAIN — A crystallographic modeling program , 1988 .

[13]  E Carafoli,et al.  Influence of Ca2+ and trifluoperazine on the structure of calmodulin. A 1H-nuclear magnetic resonance study. , 2005, European journal of biochemistry.

[14]  D. Giedroc,et al.  Differential trace labeling of calmodulin: investigation of binding sites and conformational states by individual lysine reactivities. Effects of beta-endorphin, trifluoperazine, and ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid. , 1985, The Journal of biological chemistry.

[15]  Axel T. Brunger,et al.  Extension of molecular replacement: a new search strategy based on Patterson correlation refinement , 1990 .

[16]  Mike Carson,et al.  Ribbon models of macromolecules , 1987 .

[17]  B. Matthews Solvent content of protein crystals. , 1968, Journal of molecular biology.

[18]  F A Quiocho,et al.  Calmodulin structure refined at 1.7 A resolution. , 1992, Journal of molecular biology.

[19]  D. Storm,et al.  Calcium-induced exposure of a hydrophobic surface on calmodulin. , 1980, Biochemistry.

[20]  A. Gronenborn,et al.  Solution structure of a calmodulin-target peptide complex by multidimensional NMR. , 1994, Science.

[21]  D. Newton,et al.  CAPP‐calmodulin: A potent competitive inhibitor of calmodulin actions , 1984, FEBS letters.

[22]  A. Means,et al.  Identification of amino acids essential for calmodulin binding and activation of smooth muscle myosin light chain kinase. , 1992, The Journal of biological chemistry.

[23]  P. Cohen,et al.  Selective effects of CAPP1-calmodulin on its target proteins. , 1985, Biochimica et biophysica acta.

[24]  B. Weiss,et al.  Inhibition of calmodulin by phenothiazines and related drugs: structure-activity relationships. , 1982, The Journal of pharmacology and experimental therapeutics.

[25]  F A Quiocho,et al.  Target enzyme recognition by calmodulin: 2.4 A structure of a calmodulin-peptide complex. , 1992, Science.

[26]  A. Means,et al.  Regulatory functions of calmodulin. , 1991, Pharmacology & therapeutics.

[27]  D. Puett,et al.  Specific acylation of calmodulin. Synthesis and adduct formation with a fluorenyl-based spin label. , 1984, The Journal of biological chemistry.

[28]  W. DeGrado,et al.  Photolabeling of calmodulin with basic, amphiphilic alpha-helical peptides containing p-benzoylphenylalanine. , 1989, The Journal of biological chemistry.

[29]  H. Jarrett,et al.  Calmodulin is labeled at lysine 148 by a chemically reactive phenothiazine. , 1987, The Journal of biological chemistry.

[30]  F A Quiocho,et al.  Modulation of calmodulin plasticity in molecular recognition on the basis of x-ray structures. , 1993, Science.

[31]  V. Luzzati,et al.  Traitement statistique des erreurs dans la determination des structures cristallines , 1952 .

[32]  R. Klevit,et al.  A study of calmodulin and its interaction with trifluoperazine by high resolution 1H NMR spectroscopy , 1981, FEBS letters.

[33]  B. Roufogalis,et al.  Pharmacological antagonism of calmodulin. , 1983, Canadian journal of biochemistry and cell biology = Revue canadienne de biochimie et biologie cellulaire.

[34]  T. Tanaka,et al.  Hydrophobic regions function in calmodulin-enzyme(s) interactions. , 1980, The Journal of biological chemistry.

[35]  R J Williams,et al.  The nature of the trifluoperazine binding sites on calmodulin and troponin-C. , 1984, Biochimica et biophysica acta.

[36]  D. Newton,et al.  Calcium ion dependent covalent modification of calmodulin with norchlorpromazine isothiocyanate. , 1983, Biochemistry.

[37]  H. Kawasaki,et al.  Crystallization of calcium-calmodulin-trifluoperazine complex and an attempt at crystallizing calcium-free calmodulin. , 1985, Journal of Biochemistry (Tokyo).