Characterization of Red/Green/Blue Orbital Angular Momentum Modes in Conventional G.652 Fiber

The space domain of lightwaves has attracted increasing interest in optical communications. Lightwaves having helical phase front and carrying orbital angular momentum (OAM) have seen potential applications both in free-space and fiber-based optical communications. The widely deployed conventional ITU-T G.652 fiber is single mode fiber at 1550 nm, which, however, might support high-order modes as well as OAM modes at short wavelength. In this paper, we present detailed theoretical analyses on the mode properties of circularly polarized OAM modes in conventional G.652 fiber at three RGB wavelengths (red at 632.8 nm, green at 532 nm, and blue at 476.5 nm). The G.652 fiber has a 4.6-<inline-formula> <tex-math notation="LaTeX">$\mu \text{m}$ </tex-math></inline-formula> core radius, a 62.5-<inline-formula> <tex-math notation="LaTeX">$\mu \text{m}$ </tex-math></inline-formula> cladding radius, and 0.277% refractive index difference between the core and the cladding. We first study all the cylindrical vector modes (fiber eigenmodes) and synthesize the circular OAM modes by proper linear combination of degenerate fiber eigenmodes supported in the G.652 fiber at three RGB wavelengths. We then calculate the effective mode area and nonlinearity and discuss the tolerance to fiber ellipticity and bending (<inline-formula> <tex-math notation="LaTeX">$\text{n}_{{\text {eff}}}$ </tex-math></inline-formula> differences, <inline-formula> <tex-math notation="LaTeX">$2\pi $ </tex-math></inline-formula> walk-off length, 10-ps walk-off length, loss, and OAM crosstalks) for red, green, and blue OAM modes. Additionally, we investigate the OAM modes properties at another three wavelengths of conventional semiconductor lasers, i.e., 780, 650, and 405 nm. Moreover, we also estimate the fiber attenuation, propagation loss, and communication bandwidth/capacity. The obtained results may stimulate wide interesting OAM related applications using conventional G.652 fiber, especially for hundreds of meters or km-scale short reach/distance applications.

[1]  M. Padgett,et al.  Advances in optical angular momentum , 2008 .

[2]  Nicolas K Fontaine,et al.  Demonstration of free space coherent optical communication using integrated silicon photonic orbital angular momentum devices. , 2012, Optics express.

[3]  A. E. Willner,et al.  Mode Properties and Propagation Effects of Optical Orbital Angular Momentum (OAM) Modes in a Ring Fiber , 2012, IEEE Photonics Journal.

[4]  N. Fontaine,et al.  Mode-multiplexed transmission over multimode fibers , 2016, 2016 21st OptoElectronics and Communications Conference (OECC) held jointly with 2016 International Conference on Photonics in Switching (PS).

[5]  A. Gnauck,et al.  Mode-Division Multiplexing Over 96 km of Few-Mode Fiber Using Coherent 6 $\,\times\,$6 MIMO Processing , 2012, Journal of Lightwave Technology.

[6]  Jian Wang,et al.  A Different Angle on Light Communications , 2012, Science.

[7]  Jian Wang,et al.  Supermode fiber for orbital angular momentum (OAM) transmission. , 2015, Optics express.

[8]  S. Ramachandran,et al.  Conservation of orbital angular momentum in air core optical fibers , 2014 .

[9]  Daniel Flamm,et al.  Mode resolved bend loss in few-mode optical fibers. , 2013, Optics express.

[10]  Jian Wang,et al.  Controllable all-fiber orbital angular momentum mode converter. , 2015, Optics letters.

[11]  Jian Wang,et al.  Demonstration of hybrid orbital angular momentum multiplexing and time-division multiplexing passive optical network. , 2015, Optics express.

[12]  A. Willner,et al.  Optical communications using orbital angular momentum beams , 2015 .

[13]  Jeremy L O'Brien,et al.  Fast electrical switching of orbital angular momentum modes using ultra-compact integrated vortex emitters , 2014, Nature Communications.

[14]  Siyuan Yu,et al.  Integrated Compact Optical Vortex Beam Emitters , 2012, Science.

[15]  Guifang Li,et al.  Space-division multiplexing: the next frontier in optical communication , 2014 .

[16]  Jian Wang,et al.  Multi-Orbital-Angular-Momentum Multi-Ring Fiber for High-Density Space-Division Multiplexing , 2013, IEEE Photonics Journal.

[17]  M. Padgett,et al.  Orbital angular momentum: origins, behavior and applications , 2011 .

[18]  J. P. Woerdman,et al.  Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[19]  Jian Wang,et al.  A Compact Trench-Assisted Multi-Orbital-Angular-Momentum Multi-Ring Fiber for Ultrahigh-Density Space-Division Multiplexing (19 Rings × 22 Modes) , 2014, Scientific Reports.

[20]  Peter J. Winzer,et al.  Modulation and multiplexing in optical communication systems , 2009 .

[21]  Jian Wang,et al.  Advances in communications using optical vortices , 2016 .

[22]  Xue Feng,et al.  Encoding and decoding of orbital angular momentum for wireless optical interconnects on chip. , 2012, Optics express.

[23]  Sophie LaRochelle,et al.  Design, fabrication and validation of an OAM fiber supporting 36 states. , 2014, Optics express.

[24]  Jian Wang,et al.  Demonstration of 20-Gbit/s high-speed Bessel beam encoding/decoding link with adaptive turbulence compensation. , 2016, Optics letters.

[25]  Jian Wang,et al.  All-fiber pre- and post-data exchange in km-scale fiber-based twisted lights multiplexing. , 2016, Optics letters.

[26]  A. Willner,et al.  Liquid-crystal-on-silicon-based optical add/drop multiplexer for orbital-angular-momentum-multiplexed optical links. , 2013, Optics letters.

[27]  Jian Wang,et al.  Adaptive power-controllable orbital angular momentum (OAM) multicasting , 2015, Scientific Reports.

[28]  L A Rusch,et al.  Few-mode fiber with inverse-parabolic graded-index profile for transmission of OAM-carrying modes. , 2014, Optics express.

[29]  A. Willner,et al.  Terabit-Scale Orbital Angular Momentum Mode Division Multiplexing in Fibers , 2013, Science.

[30]  Roland Ryf,et al.  6×56-Gb/s mode-division multiplexed transmission over 33-km few-mode fiber enabled by 6×6 MIMO equalization. , 2011, Optics express.

[31]  L. Nelson,et al.  Space-division multiplexing in optical fibres , 2013, Nature Photonics.

[32]  F. Alhassen,et al.  Observation of orbital angular momentum transfer between acoustic and optical vortices in optical fiber. , 2006, Physical review letters.

[33]  Jian Wang,et al.  Characterization of LDPC-coded orbital angular momentum modes transmission and multiplexing over a 50-km fiber. , 2016, Optics express.

[34]  Jian Wang,et al.  Full-duplex bidirectional data transmission link using twisted lights multiplexing over 1.1-km orbital angular momentum fiber , 2016, Scientific Reports.

[35]  Jian Wang,et al.  Data information transfer using complex optical fields: a review and perspective (Invited Paper) , 2017 .

[36]  A. Willner,et al.  Terabit free-space data transmission employing orbital angular momentum multiplexing , 2012, Nature Photonics.

[37]  Fang Liu,et al.  Integrated photonic emitter with a wide switching range of orbital angular momentum modes , 2016, Scientific Reports.

[38]  J. Fleming Dispersion in GeO2-SiO2 glasses. , 1984, Applied optics.

[39]  Govind P. Agrawal,et al.  Nonlinear Fiber Optics , 1989 .

[40]  Gabriel Molina-Terriza,et al.  Management of the angular momentum of light: preparation of photons in multidimensional vector states of angular momentum. , 2002, Physical review letters.

[41]  F. Huijskens,et al.  Ultra-high-density spatial division multiplexing with a few-mode multicore fibre , 2014, Nature Photonics.

[42]  Peter J. Winzer,et al.  MIMO capacities and outage probabilities in spatially multiplexed optical transport systems. , 2011, Optics express.

[43]  Johannes Courtial,et al.  Light’s Orbital Angular Momentum , 2004 .

[44]  G. K. L. Wong,et al.  Excitation of Orbital Angular Momentum Resonances in Helically Twisted Photonic Crystal Fiber , 2012, Science.

[45]  Siddharth Ramachandran,et al.  Generation and propagation of radially polarized beams in optical fibers. , 2009, Optics letters.