Environmental/economic power dispatch using a Hybrid Big Bang–Big Crunch optimization algorithm

The combined economic and emission dispatch (CEED) problem where objective function is highly non linear, non-differentiable and may have multiple local minima. Therefore, classical optimization methods may not converge or get trapped to any local minima. This paper proposes a Hybrid Big Bang–Big Crunch (HBB–BC) optimization algorithm technique for solving the CEED. Six generator test and IEEE 30 standard bus system was used for testing and validation purposes. The preference of the HBB–BC is compared with other heuristic methods. The results show, clearly, that the proposed method gives better optimal solution as compared to the other methods.

[1]  Zwe-Lee Gaing,et al.  Particle swarm optimization to solving the economic dispatch considering the generator constraints , 2003 .

[2]  Allen J. Wood,et al.  Power Generation, Operation, and Control , 1984 .

[3]  M. A. Abido,et al.  A niched Pareto genetic algorithm for multiobjective environmental/economic dispatch , 2003 .

[4]  Mohammad Ali Abido,et al.  Multiobjective evolutionary algorithms for electric power dispatch problem , 2006, IEEE Transactions on Evolutionary Computation.

[5]  A. Kaveh,et al.  Size optimization of space trusses using Big Bang-Big Crunch algorithm , 2009 .

[6]  Waree Kongprawechnon,et al.  Application of multiple tabu search algorithm to solve dynamic economic dispatch considering generator constraints , 2008 .

[7]  L. C. de Freitas,et al.  A high-power high-frequency ZCS-ZVS-PWM buck converter using a feedback resonant circuit , 1993 .

[8]  Weerakorn Ongsakul,et al.  Parallel tabu search algorithm for constrained economic dispatch , 2004 .

[9]  Charles V. Camp,et al.  CO2 and cost optimization of reinforced concrete frames using a big bang-big crunch algorithm , 2013 .

[10]  Ibrahim Eksin,et al.  A new optimization method: Big Bang-Big Crunch , 2006, Adv. Eng. Softw..

[11]  Manoj Kumar Tiwari,et al.  A clonal algorithm to solve economic load dispatch , 2007 .

[12]  J. S. Heslin,et al.  A multiobjective production costing model for analyzing emissions dispatching and fuel switching (of power stations) , 1989 .

[13]  G. Sheblé,et al.  Genetic algorithm solution of economic dispatch with valve point loading , 1993 .

[14]  Hong-Tzer Yang,et al.  Evolutionary programming based economic dispatch for units with non-smooth fuel cost functions , 1996 .

[15]  G. P. Granelli,et al.  Emission constrained dynamic dispatch , 1992 .

[16]  A. Kaveh,et al.  A DISCRETE BIG BANG - BIG CRUNCH ALGORITHM FOR OPTIMAL DESIGN OF SKELETAL STRUCTURES , 2010 .

[17]  Yacine Labbi,et al.  Journal of Theoretical and Applied Information Technology Big Bang–big Crunch Optimization Algorithm for Economic Dispatch with Valve-point Effect , 2022 .

[18]  Lixiang Li,et al.  CHAOTIC PARTICLE SWARM OPTIMIZATION FOR ECONOMIC DISPATCH CONSIDERING THE GENERATOR CONSTRAINTS , 2007 .

[19]  S. A. Al-Baiyat,et al.  Economic load dispatch multiobjective optimization procedures using linear programming techniques , 1995 .

[20]  Ferial El-Hawary,et al.  A summary of environmental/economic dispatch algorithms , 1994 .

[21]  H. Habuchi,et al.  New pulse spacing modulation based on spread-spectrum communication schemes , 2004 .

[22]  S. Khamsawang,et al.  Solving the Economic Dispatch Problem using Novel Particle Swarm Optimization , 2009 .

[23]  Ali Kaveh,et al.  Truss optimization with natural frequency constraints using a hybridized CSS-BBBC algorithm with trap recognition capability , 2012 .

[24]  A. A. El-Keib,et al.  Economic dispatch in view of the Clean Air Act of 1990 , 1994 .

[25]  H. Sasaki,et al.  Multiobjective optimal generation dispatch based on probability security criteria , 1988 .

[26]  Hong-Chan Chang,et al.  Large-scale economic dispatch by genetic algorithm , 1995 .

[27]  Lixiang Li,et al.  A multi-objective chaotic particle swarm optimization for environmental/economic dispatch , 2009 .