Unusually Large Band Gap Changes in Breathing Metal-Organic Framework Materials

Many of the potential applications for metal–organic frameworks (MOFs) focus on exploiting their porosity for molecular storage, release, and separation, where the functional behavior is controlled by a subtle balance of host–guest interactions. Typically, the host structure is relatively unperturbed by the presence of guests; however, a subset of MOFs exhibit dramatic phase-change behavior triggered by the adsorption of guests or other stimuli, for which the MIL-53 material is an archetype. In this work, we use density functional approaches to examine the electronic structure changes associated with changes of phase and density and find the associated change in band gaps can be larger than 1 eV for known MIL-53-type materials and hypothecated structures. Moreover, we show that internal pressure (via guest molecules) and external pressure can exert a major influence on the band gap size and gap states. The large response in electronic properties to breathing transitions in MOFs could be exploitable in fut...

[1]  K. Butler,et al.  Polymorph Engineering of TiO2: Demonstrating How Absolute Reference Potentials Are Determined by Local Coordination , 2015 .

[2]  Sanliang Ling,et al.  Theoretical study of conformational disorder and selective adsorption of small organic molecules in the flexible metal-organic framework material MIL-53-Fe , 2015 .

[3]  D. Sholl,et al.  Computational Prediction of Metal Organic Frameworks Suitable for Molecular Infiltration as a Route to Development of Conductive Materials. , 2015, The journal of physical chemistry letters.

[4]  Isabelle Beurroies,et al.  The direct heat measurement of mechanical energy storage metal-organic frameworks. , 2015, Angewandte Chemie.

[5]  M. E. Foster,et al.  Guest-Induced Emergent Properties in Metal-Organic Frameworks. , 2015, The journal of physical chemistry letters.

[6]  François-Xavier Coudert,et al.  Responsive Metal–Organic Frameworks and Framework Materials: Under Pressure, Taking the Heat, in the Spotlight, with Friends , 2015 .

[7]  Christopher H. Hendon,et al.  Absorbate-Induced Piezochromism in a Porous Molecular Crystal , 2015, Nano letters.

[8]  Christopher H. Hendon,et al.  Cation-dependent intrinsic electrical conductivity in isostructural tetrathiafulvalene-based microporous metal-organic frameworks. , 2015, Journal of the American Chemical Society.

[9]  Sanliang Ling,et al.  Contradistinct Thermoresponsive Behavior of Isostructural MIL-53 Type Metal?Organic Frameworks by Modifying the Framework Inorganic Anion , 2015 .

[10]  Aron Walsh,et al.  Electronic Structure Modulation of Metal–Organic Frameworks for Hybrid Devices , 2014, ACS applied materials & interfaces.

[11]  Jan W. Jaeken,et al.  Quasi-1D physics in metal-organic frameworks: MIL-47(V) from first principles , 2014, Beilstein journal of nanotechnology.

[12]  Wu Xu,et al.  An Electrically Switchable Metal-Organic Framework , 2014, Scientific Reports.

[13]  E. Hey‐Hawkins,et al.  The first depleted heterojunction TiO2-MOF-based solar cell. , 2014, Chemical communications.

[14]  M. Allendorf,et al.  MOF-based electronic and opto-electronic devices. , 2014, Chemical Society reviews.

[15]  S. Kaskel,et al.  Flexible metal-organic frameworks. , 2014, Chemical Society reviews.

[16]  Wenbin Lin,et al.  Metal-organic frameworks for artificial photosynthesis and photocatalysis. , 2014, Chemical Society reviews.

[17]  Alán Aspuru-Guzik,et al.  High electrical conductivity in Ni₃(2,3,6,7,10,11-hexaiminotriphenylene)₂, a semiconducting metal-organic graphene analogue. , 2014, Journal of the American Chemical Society.

[18]  Bryan M. Wong,et al.  Novel metal–organic framework linkers for light harvesting applications , 2014 .

[19]  Bin Liu,et al.  A p-type Ti(IV)-based metal-organic framework with visible-light photo-response. , 2014, Chemical communications.

[20]  H. Mizuseki,et al.  Engineering of Band Gap in Metal–Organic Frameworks by Functionalizing Organic Linker: A Systematic Density Functional Theory Investigation , 2014 .

[21]  Aron Walsh,et al.  Electronic Chemical Potentials of Porous Metal–Organic Frameworks , 2014, Journal of the American Chemical Society.

[22]  Shang‐Peng Gao,et al.  The Stability, Electronic Structure, and Optical Property of TiO2 Polymorphs , 2013, 1312.2297.

[23]  Freek Kapteijn,et al.  Enhancing optical absorption of metal-organic frameworks for improved visible light photocatalysis. , 2013, Chemical communications.

[24]  M. Dincǎ,et al.  Ti(3+)-, V(2+/3+)-, Cr(2+/3+)-, Mn(2+)-, and Fe(2+)-substituted MOF-5 and redox reactivity in Cr- and Fe-MOF-5. , 2013, Journal of the American Chemical Society.

[25]  Y. Horiuchi,et al.  Recent advances in visible-light-responsive photocatalysts for hydrogen production and solar energy conversion--from semiconducting TiO2 to MOF/PCP photocatalysts. , 2013, Physical chemistry chemical physics : PCCP.

[26]  P. Guerrier,et al.  Aluminum-1,4-cyclohexanedicarboxylates: high-throughput and temperature-dependent in situ EDXRD studies. , 2013, Inorganic chemistry.

[27]  Aron Walsh,et al.  Engineering the optical response of the titanium-MIL-125 metal-organic framework through ligand functionalization. , 2013, Journal of the American Chemical Society.

[28]  J. Greneche,et al.  Isomorphous substitution in a flexible metal-organic framework: mixed-metal, mixed-valent MIL-53 type materials. , 2013, Inorganic chemistry.

[29]  C. Morrison,et al.  Elucidating the breathing of the metal-organic framework MIL-53(Sc) with ab initio molecular dynamics simulations and in situ X-ray powder diffraction experiments. , 2013, Journal of the American Chemical Society.

[30]  D. D. De Vos,et al.  Adsorption of N/S heterocycles in the flexible metal-organic framework MIL-53(Fe(III)) studied by in situ energy dispersive X-ray diffraction. , 2013, Physical chemistry chemical physics : PCCP.

[31]  François-Xavier Coudert,et al.  Temperature-Induced Structural Transitions in the Gallium-Based MIL-53 Metal–Organic Framework , 2013 .

[32]  Mingyan Wu,et al.  A multi-metal-cluster MOF with Cu4I4 and Cu6S6 as functional groups exhibiting dual emission with both thermochromic and near-IR character , 2013 .

[33]  François-Xavier Coudert,et al.  Anisotropic elastic properties of flexible metal-organic frameworks: how soft are soft porous crystals? , 2012, Physical review letters.

[34]  C. Serre,et al.  Tuning the breathing behaviour of MIL-53 by cation mixing. , 2012, Chemical communications.

[35]  T. Xu,et al.  Tunability of band gaps in metal-organic frameworks. , 2012, Inorganic chemistry.

[36]  Zhaohui Li,et al.  An amine-functionalized titanium metal-organic framework photocatalyst with visible-light-induced activity for CO2 reduction. , 2012, Angewandte Chemie.

[37]  K. Rissanen,et al.  Breathing molecular crystals: halogen- and hydrogen-bonded porous molecular crystals with solvent induced adaptation of the nanosized channels , 2012 .

[38]  A. Ghoufi,et al.  Large breathing of the MOF MIL-47(VIV) under mechanical pressure: a joint experimental–modelling exploration , 2012 .

[39]  F. Paesani,et al.  Molecular-level characterization of the breathing behavior of the jungle-gym-type DMOF-1 metal-organic framework. , 2012, Journal of the American Chemical Society.

[40]  T. Uemura,et al.  Gas detection by structural variations of fluorescent guest molecules in a flexible porous coordination polymer. , 2011, Nature materials.

[41]  A. Vimont,et al.  Influence of the Oxidation State of the Metal Center on the Flexibility and Adsorption Properties of a Porous Metal Organic Framework: MIL-47(V) , 2011 .

[42]  Zhigang Xie,et al.  Doping metal-organic frameworks for water oxidation, carbon dioxide reduction, and organic photocatalysis. , 2011, Journal of the American Chemical Society.

[43]  A. Cooper,et al.  On-off porosity switching in a molecular organic solid. , 2011, Angewandte Chemie.

[44]  A. Jacobson,et al.  Breathing and twisting: an investigation of framework deformation and guest packing in single crystals of a microporous vanadium benzenedicarboxylate. , 2011, Inorganic chemistry.

[45]  C. Serre,et al.  Using pressure to provoke the structural transition of metal-organic frameworks. , 2010, Angewandte Chemie.

[46]  J. Soler,et al.  Flexibility in a metal-organic framework material controlled by weak dispersion forces: the bistability of MIL-53(Al). , 2010, Angewandte Chemie.

[47]  Avelino Corma,et al.  Water stable Zr-benzenedicarboxylate metal-organic frameworks as photocatalysts for hydrogen generation. , 2010, Chemistry.

[48]  C. Serre,et al.  Multistep N2 breathing in the metal-organic framework co(1,4-benzenedipyrazolate). , 2010, Journal of the American Chemical Society.

[49]  Delphine Bazer-Bachi,et al.  Catalysis of transesterification by a nonfunctionalized metal-organic framework: acido-basicity at the external surface of ZIF-8 probed by FTIR and ab initio calculations. , 2010, Journal of the American Chemical Society.

[50]  Shyue Ping Ong,et al.  Hybrid density functional calculations of redox potentials and formation energies of transition metal compounds , 2010 .

[51]  M. Allendorf,et al.  Conductivity, Doping, and Redox Chemistry of a Microporous Dithiolene-Based Metal−Organic Framework , 2010 .

[52]  R. Walton,et al.  Selective Sorption of Organic Molecules by the Flexible Porous Hybrid Metal−Organic Framework MIL-53(Fe) Controlled by Various Host−Guest Interactions , 2010 .

[53]  S. Grimme,et al.  A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.

[54]  A. Corma,et al.  Metal–organic frameworks as semiconductors , 2010 .

[55]  A. Jacobson,et al.  AlF.1,4-benzenedicarboxylate: synthesis and absorption properties. , 2010, Dalton transactions.

[56]  C. Serre,et al.  Functionalization in flexible porous solids: effects on the pore opening and the host-guest interactions. , 2010, Journal of the American Chemical Society.

[57]  N. Bats,et al.  External Surface of Zeolite Imidazolate Frameworks Viewed Ab Initio: Multifunctionality at the Organic−Inorganic Interface , 2010 .

[58]  François-Xavier Coudert,et al.  Stress-Based Model for the Breathing of Metal-Organic Frameworks. , 2010, The journal of physical chemistry letters.

[59]  S. Kitagawa,et al.  Soft porous crystals. , 2009, Nature chemistry.

[60]  Gérard Férey,et al.  A new photoactive crystalline highly porous titanium(IV) dicarboxylate. , 2009, Journal of the American Chemical Society.

[61]  R. Dittmann,et al.  Redox‐Based Resistive Switching Memories – Nanoionic Mechanisms, Prospects, and Challenges , 2009, Advanced materials.

[62]  C. Serre,et al.  Large breathing effects in three-dimensional porous hybrid matter: facts, analyses, rules and consequences. , 2009, Chemical Society reviews.

[63]  Freek Kapteijn,et al.  An amine-functionalized MIL-53 metal-organic framework with large separation power for CO2 and CH4. , 2009, Journal of the American Chemical Society.

[64]  A. Vimont,et al.  XRD and IR structural investigations of a particular breathing effect in the MOF-type gallium terephthalate MIL-53(Ga). , 2009, Dalton transactions.

[65]  Daniel Gunzelmann,et al.  Synthesis and modification of a functionalized 3D open-framework structure with MIL-53 topology. , 2009, Inorganic chemistry.

[66]  Gerard P M van Klink,et al.  Isoreticular MOFs as efficient photocatalysts with tunable band gap: an operando FTIR study of the photoinduced oxidation of propylene. , 2008, ChemSusChem.

[67]  A Alec Talin,et al.  Stress-induced chemical detection using flexible metal-organic frameworks. , 2008, Journal of the American Chemical Society.

[68]  D. Neumann,et al.  Reversible structural transition in MIL-53 with large temperature hysteresis. , 2008, Journal of the American Chemical Society.

[69]  C. Serre,et al.  Structural effects of solvents on the breathing of metal-organic frameworks: an in situ diffraction study. , 2008, Angewandte Chemie.

[70]  M. Wuttig,et al.  Phase-change materials for rewriteable data storage. , 2007, Nature materials.

[71]  G. Seifert,et al.  Metal-organic frameworks: structural, energetic, electronic, and mechanical properties. , 2007, The journal of physical chemistry. B.

[72]  Artur F Izmaylov,et al.  Influence of the exchange screening parameter on the performance of screened hybrid functionals. , 2006, The Journal of chemical physics.

[73]  Bartolomeo Civalleri,et al.  Ab-initio prediction of materials properties with CRYSTAL: MOF-5 as a case study , 2006 .

[74]  M. Ratner,et al.  Intermolecular charge transfer between heterocyclic oligomers. Effects of heteroatom and molecular packing on hopping transport in organic semiconductors. , 2005, Journal of the American Chemical Society.

[75]  B. Sumpter,et al.  Electronic structure and properties of isoreticular metal-organic frameworks: the case of M-IRMOF1 (M = Zn, Cd, Be, Mg, and Ca). , 2005, The Journal of chemical physics.

[76]  Michele Parrinello,et al.  Quickstep: Fast and accurate density functional calculations using a mixed Gaussian and plane waves approach , 2005, Comput. Phys. Commun..

[77]  Gérard Férey,et al.  A route to the synthesis of trivalent transition-metal porous carboxylates with trimeric secondary building units. , 2004, Angewandte Chemie.

[78]  B. Slater,et al.  Rational design of the pore system within the framework aluminium alkylenediphosphonate series. , 2004, Chemistry.

[79]  Gérard Férey,et al.  Very Large Breathing Effect in the First Nanoporous Chromium(III)-Based Solids: MIL-53 or CrIII(OH)·{O2C−C6H4−CO2}·{HO2C−C6H4−CO2H}x·H2Oy , 2002 .

[80]  J. Marrot,et al.  A breathing hybrid organic-inorganic solid with very large pores and high magnetic characteristics. , 2002, Angewandte Chemie.

[81]  K. Knight,et al.  Cooperative Jahn-Teller Effect in Titanium Alum , 1997 .

[82]  S. Desgreniers,et al.  Raman study of single crystal anatase TiO2 up to 70 GPa , 1995 .

[83]  T. Kikegawa,et al.  Baddeleyite-Type High-Pressure Phase of TiO2 , 1991, Science.

[84]  J. Sygusch Refinement of β‐alum CsTi(S4)2.12H2O , 1974 .

[85]  W. R. Robinson The crystal structures of Ti2O3, a semiconductor, and (Ti0.900V0.100)2O3, a semimetal , 1974 .

[86]  Joost VandeVondele,et al.  cp2k: atomistic simulations of condensed matter systems , 2014 .