Some results on Betti numbers of Stanley-Reisner rings

We study the Betti numbers which appear in a minimal free resolution of the Stanley-Reisner ring k[Δ] = A/IΔ of a simplicial complex Δ over a field k. It is known that the second Betti number of k[Δ] is independent of the base field k. We show that, when the ideal IΔ is generated by square-free monomials of degree two, the third and fourth Betti numbers are also independent of k. On the other hand, we prove that, if the geometric realization of Δ is homeomorphic to either the 3-sphere or the 3-ball, then all the Betti numbers of k[Δ] are independent of the base field k.

[1]  N. Terai,et al.  Alexander duality theorem and second Betti numbers of Stanley-Reisner rings , 1995 .

[2]  Mitsuyasu Hashimoto,et al.  Resolutions of determinantal ideals , 1989 .

[3]  T. Hibi,et al.  Monomial ideals and minimal non-faces of Cohen-Macaulay complexes , 1995 .

[4]  Mitsuyasu Hashimoto,et al.  Resolutions of determinantal ideals: -minors of ( + 2)-square matrices , 1992 .

[5]  James R. Munkres,et al.  Topological results in combinatorics. , 1984 .

[6]  G. A. Reisner,et al.  Cohen-Macaulay quotients of polynomial rings , 1976 .

[7]  Takayuki Hibi Buchsbaum Complexes with Linear Resolutions , 1994 .

[8]  A. Brøndsted An Introduction to Convex Polytopes , 1982 .

[9]  A. Björner Shellable and Cohen-Macaulay partially ordered sets , 1980 .

[10]  Takayuki Hibi,et al.  Canonical modules and Cohen-Macaulay types of partially ordered sets , 1993 .

[11]  I. Herstein,et al.  Topics in algebra , 1964 .

[12]  Takayuki Hibi,et al.  Computation of betti numbers of monomial ideals associated with cyclic polytopes , 1996, Discret. Comput. Geom..

[13]  Ralf Fröberg,et al.  On Stanley-Reisner rings , 1990 .

[14]  Takayuki Hibi,et al.  Stanley-reisner rings with pure resolutions , 1995 .

[15]  Takayuki Hibi,et al.  Computation of betti numbers of monomial ideals associated with stacked polytopes , 1997 .

[16]  日比 孝之,et al.  Algebraic combinatorics on convex polytopes , 1992 .

[17]  Kenneth Baclawski,et al.  Cohen-Macaulay Connectivity and Geometric Lattices , 1982, Eur. J. Comb..

[18]  Takayuki Hibi,et al.  Cohen-Macaulay Types of Cohen-Macaulay Complexes , 1992 .

[19]  W. Bruns,et al.  Cohen-Macaulay rings , 1993 .

[20]  Winfried Bruns,et al.  On multigraded resolutions , 1995, Mathematical Proceedings of the Cambridge Philosophical Society.

[21]  R. Stanley What Is Enumerative Combinatorics , 1986 .

[22]  P. Mani,et al.  Shellable Decompositions of Cells and Spheres. , 1971 .

[23]  R. Stanley Combinatorics and commutative algebra , 1983 .