Titania nanotubes: a novel platform for drug-eluting coatings for medical implants?

[1]  Tejal A Desai,et al.  Influence of engineered titania nanotubular surfaces on bone cells. , 2007, Biomaterials.

[2]  Craig A. Grimes,et al.  A new benchmark for TiO2 nanotube array growth by anodization , 2007 .

[3]  Craig A. Grimes,et al.  Synthesis and application of highly ordered arrays of TiO2 nanotubes , 2007 .

[4]  Hongjie Dai,et al.  siRNA delivery into human T cells and primary cells with carbon-nanotube transporters. , 2007, Angewandte Chemie.

[5]  Sung Ju Cho,et al.  Quantum dot-induced cell death involves Fas upregulation and lipid peroxidation in human neuroblastoma cells , 2007, Journal of nanobiotechnology.

[6]  A. Boskey,et al.  Release of gentamicin from a tricalcium phosphate bone implant , 2007, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[7]  C. Grimes,et al.  Cation Effect on the Electrochemical Formation of Very High Aspect Ratio TiO2 Nanotube Arrays in Formamide−Water Mixtures , 2007 .

[8]  Sai T Reddy,et al.  Targeting dendritic cells with biomaterials: developing the next generation of vaccines. , 2006, Trends in immunology.

[9]  Kinam Park,et al.  Mechanisms of controlled drug release from drug-eluting stents. , 2006, Advanced drug delivery reviews.

[10]  Craig A. Grimes,et al.  Backside illuminated dye-sensitized solar cells based on titania nanotube array electrodes , 2006 .

[11]  M. Prato,et al.  Functionalized carbon nanotubes as emerging nanovectors for the delivery of therapeutics. , 2006, Biochimica et biophysica acta.

[12]  M. Ozkan,et al.  Nano-oncology: drug delivery, imaging, and sensing , 2006, Analytical and bioanalytical chemistry.

[13]  V. Lehto,et al.  Mesoporous silicon microparticles for oral drug delivery: loading and release of five model drugs. , 2005, Journal of controlled release : official journal of the Controlled Release Society.

[14]  Eugeniu Balaur,et al.  Wetting behaviour of layers of TiO2 nanotubes with different diameters , 2005 .

[15]  Craig A. Grimes,et al.  The effect of electrolyte composition on the fabrication of self-organized titanium oxide nanotube arrays by anodic oxidation , 2005 .

[16]  Craig A Grimes,et al.  Enhanced photocleavage of water using titania nanotube arrays. , 2005, Nano letters.

[17]  Omid C. Farokhzad,et al.  Nanoparticle-Aptamer Bioconjugates , 2004, Cancer Research.

[18]  Peter W. Swaan,et al.  Microfabricated Porous Silicon Particles Enhance Paracellular Delivery of Insulin Across Intestinal Caco-2 Cell Monolayers , 2004, Pharmaceutical Research.

[19]  P. Wilshaw,et al.  Initial in vitro interaction of osteoblasts with nano-porous alumina. , 2003, Biomaterials.

[20]  Craig A. Grimes,et al.  Crystallization and high-temperature structural stability of titanium oxide nanotube arrays , 2003 .

[21]  S. Santavirta,et al.  Recombinant Human Bone Morphogenetic Protein-2 for Treatment of Open Tibial Fractures: A Prospective, Controlled, Randomized Study of Four Hundred and Fifty Patients , 2002, The Journal of bone and joint surgery. American volume.

[22]  Craig A. Grimes,et al.  Titanium oxide nanotube arrays prepared by anodic oxidation , 2001 .

[23]  J. M. Barrales-rienda,et al.  Validation and in vitro characterization of antibiotic-loaded bone cement release. , 2000, International journal of pharmaceutics.

[24]  C. Bünger,et al.  Transforming growth factor-beta stimulates bone ongrowth. Hydroxyapatite-coated implants studied in dogs. , 1996, Acta orthopaedica Scandinavica.

[25]  A. Tencer,et al.  Controlled release of antibiotics from coated orthopedic implants. , 1996, Journal of biomedical materials research.

[26]  B D Boyan,et al.  Role of material surfaces in regulating bone and cartilage cell response. , 1996, Biomaterials.