Discussion of proposed mechanisms of thermal conductivity enhancement in nanofluids

[1]  Sidney Yip,et al.  Mechanism of thermal transport in dilute nanocolloids. , 2007, Physical review letters.

[2]  Xing Zhang,et al.  Effective thermal conductivity and thermal diffusivity of nanofluids containing spherical and cylindrical nanoparticles , 2006 .

[3]  R. Prasher,et al.  Effect of aggregation kinetics on the thermal conductivity of nanoscale colloidal solutions (nanofluid). , 2006, Nano letters.

[4]  R. Prasher,et al.  Brownian-motion-based convective-conductive model for the effective thermal conductivity of nanofluids , 2006 .

[5]  Miccal T. Matthews,et al.  Flow around nanospheres and nanocylinders , 2006 .

[6]  J. Fish,et al.  Role of Brownian motion hydrodynamics on nanofluid thermal conductivity , 2006 .

[7]  Donggeun Lee,et al.  A new parameter to control heat transport in nanofluids: surface charge state of the particle in suspension. , 2006, The journal of physical chemistry. B.

[8]  P. Keblinski,et al.  Hydrodynamic field around a Brownian particle. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[9]  K. Tankeshwar,et al.  The heat current density correlation function: sum rules and thermal conductivity , 2006 .

[10]  L. Shchur,et al.  Test of multiscaling in a diffusion-limited-aggregation model using an off-lattice killing-free algorithm. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[11]  C. Chon,et al.  Empirical correlation finding the role of temperature and particle size for nanofluid (Al2O3) thermal conductivity enhancement , 2005 .

[12]  K. Kremer,et al.  Flow boundary conditions for chain-end adsorbing polymer blends. , 2005, The Journal of chemical physics.

[13]  Huaqing Xie,et al.  Effect of interfacial nanolayer on the effective thermal conductivity of nanoparticle-fluid mixture , 2005 .

[14]  T. Dey,et al.  Semiclassical statistical mechanics of hard-body fluid mixtures. , 2005, The Journal of chemical physics.

[15]  Q. Xue,et al.  A model of thermal conductivity of nanofluids with interfacial shells , 2005 .

[16]  S. Lyuksyutov,et al.  Density-functional description of water condensation in proximity of nanoscale asperity. , 2005, The Journal of chemical physics.

[17]  R. Prasher,et al.  Thermal conductivity of nanoscale colloidal solutions (nanofluids). , 2005, Physical review letters.

[18]  S. Dietrich,et al.  Bulk and wetting phenomena in a colloidal mixture of hard spheres and platelets. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[19]  J. Koo,et al.  A new thermal conductivity model for nanofluids , 2004 .

[20]  E. Economou,et al.  Phonons in suspensions of hard sphere colloids: volume fraction dependence. , 2004, The Journal of chemical physics.

[21]  D. Frenkel,et al.  Simulating colloids with Baxter’s adhesive hard sphere model , 2004, cond-mat/0406603.

[22]  K. Dill,et al.  Water-like fluid in the presence of Lennard–Jones obstacles: predictions of an associative replica Ornstein–Zernike theory☆ , 2004 .

[23]  R. Prasher,et al.  Brownian dynamics simulation to determine the effective thermal conductivity of nanofluids , 2004 .

[24]  Stephen U. S. Choi,et al.  Role of Brownian motion in the enhanced thermal conductivity of nanofluids , 2004 .

[25]  H. Lekkerkerker,et al.  Phase diagram of mixtures of hard colloidal spheres and discs: a free-volume scaled-particle approach. , 2004, The Journal of chemical physics.

[26]  B. Wang,et al.  A fractal model for predicting the effective thermal conductivity of liquid with suspension of nanoparticles , 2003 .

[27]  B. Dünweg,et al.  Boundary slip as a result of a prewetting transition , 2003, cond-mat/0306345.

[28]  E. Economou,et al.  Phonons in colloidal systems , 2003 .

[29]  M. Schmidt Geometry-based density functional theory: an overview , 2003 .

[30]  S. Phillpot,et al.  Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids) , 2002 .

[31]  Hans-Jürgen Butt,et al.  Hydrodynamic force measurements: boundary slip of water on hydrophilic surfaces and electrokinetic effects. , 2002, Physical review letters.

[32]  G. Jackson,et al.  An examination of the vapour-liquid interface of associating fluids using a SAFT-DFT approach , 2001 .

[33]  William A. Goddard,et al.  Thermal conductivity of diamond and related materials from molecular dynamics simulations , 2000 .

[34]  V. Talanquer,et al.  Gas–liquid nucleation in associating fluids , 2000 .

[35]  H. Lekkerkerker,et al.  Phase behavior of colloidal rod-sphere mixtures , 1999 .

[36]  S. B. Yuste,et al.  Structure of multi-component hard-sphere mixtures , 1998 .

[37]  Walter G Chapman,et al.  Associating fluids with four bonding sites against a hard wall: density functional theory , 1997 .

[38]  A. Galindo,et al.  Predicting the High-Pressure Phase Equilibria of Water + n-Alkanes Using a Simplified SAFT Theory with Transferable Intermolecular Interaction Parameters , 1996 .

[39]  D. Frenkel,et al.  Numerical study of the phase diagram of a mixture of spherical and rodlike colloids , 1994 .

[40]  Walter G Chapman,et al.  Theory and simulation for associating fluids with four bonding sites , 1993 .

[41]  K. Gubbins,et al.  Phase equilibria for associating Lennard-Jones fluids from theory and simulation , 1992 .

[42]  Robbins,et al.  Shear flow near solids: Epitaxial order and flow boundary conditions. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[43]  D. MacGowan,et al.  A comparison of NEMD algorithms for thermal conductivity , 1986 .

[44]  W. Russel,et al.  Brownian Motion of Small Particles Suspended in Liquids , 1981 .

[45]  J. Jarzynski,et al.  Isothermal Compressibility and the Structure Factor of Liquid Alkali Metals , 1969 .

[46]  D. Langreth,et al.  Structure of Binary Liquid Mixtures. I , 1967 .

[47]  O. K. Crosser,et al.  Thermal Conductivity of Heterogeneous Two-Component Systems , 1962 .

[48]  S. Rice,et al.  On an Approximate Theory of Transport in Dense Media , 1959 .