Central Cholinergic Neurons Are Rapidly Recruited by Reinforcement Feedback

[1]  Heydar Davoudi,et al.  Selective Activation of a Putative Reinforcement Signal Conditions Cued Interval Timing in Primary Visual Cortex , 2015, Current Biology.

[2]  Jeremiah Y. Cohen,et al.  Serotonergic neurons signal reward and punishment on multiple timescales , 2015, eLife.

[3]  Z. Nadasdy,et al.  Neurons in the basal forebrain project to the cortex in a complex topographic organization that reflects corticocortical connectivity patterns: an experimental study based on retrograde tracing and 3D reconstruction. , 2015, Cerebral cortex.

[4]  C. Petersen,et al.  Cholinergic signals in mouse barrel cortex during active whisker sensing. , 2014, Cell reports.

[5]  Cortical parvalbumin and somatostatin GABA neurons express distinct endogenous modulators of nicotinic acetylcholine receptors , 2014, Molecular Brain.

[6]  K. Zilles,et al.  Deep brain stimulation of the nucleus basalis of Meynert in Alzheimer’s dementia , 2014, Molecular Psychiatry.

[7]  Wulfram Gerstner,et al.  Stochastic variational learning in recurrent spiking networks , 2014, Front. Comput. Neurosci..

[8]  Shi-Chieh Lin,et al.  Motivational Salience Signal in the Basal Forebrain Is Coupled with Faster and More Precise Decision Speed , 2014, PLoS biology.

[9]  Joshua I. Sanders,et al.  Cortical interneurons that specialize in disinhibitory control , 2013, Nature.

[10]  Michael J. Goard,et al.  Fast Modulation of Visual Perception by Basal Forebrain Cholinergic Neurons , 2013, Nature Neuroscience.

[11]  Attila Losonczy,et al.  Septo-hippocampal GABAergic signaling across multiple modalities in awake mice , 2013, Nature Neuroscience.

[12]  E. Marder,et al.  From the connectome to brain function , 2013, Nature Methods.

[13]  M. Bear,et al.  A Cholinergic Mechanism for Reward Timing within Primary Visual Cortex , 2013, Neuron.

[14]  Yang Dan,et al.  Cell-type-specific modulation of neocortical activity by basal forebrain input , 2013, Front. Syst. Neurosci..

[15]  C. Schreiner,et al.  Long-term modification of cortical synapses improves sensory perception , 2012, Nature Neuroscience.

[16]  Z. Gu,et al.  Cholinergic Coordination of Presynaptic and Postsynaptic Activity Induces Timing-Dependent Hippocampal Synaptic Plasticity , 2012, The Journal of Neuroscience.

[17]  Jack Waters,et al.  Selective optogenetic stimulation of cholinergic axons in neocortex. , 2012, Journal of neurophysiology.

[18]  Anne E Carpenter,et al.  Neuron-type specific signals for reward and punishment in the ventral tegmental area , 2011, Nature.

[19]  L. Záborszky,et al.  The Basal Forebrain Cholinergic Projection System in Mice Neuron Types in the Basal Forebrain - Chapter 28 The Mouse Nervous System , 2012 .

[20]  Johannes J. Letzkus,et al.  A disinhibitory microcircuit for associative fear learning in the auditory cortex , 2011, Nature.

[21]  H. Zhang,et al.  A distinctive subpopulation of medial septal slow-firing neurons promote hippocampal activation and theta oscillations. , 2011, Journal of neurophysiology.

[22]  Z. Gu,et al.  Timing-Dependent Septal Cholinergic Induction of Dynamic Hippocampal Synaptic Plasticity , 2011, Neuron.

[23]  M. Hasselmo,et al.  Modes and Models of Forebrain Cholinergic Neuromodulation of Cognition , 2011, Neuropsychopharmacology.

[24]  Henning Sprekeler,et al.  Functional Requirements for Reward-Modulated Spike-Timing-Dependent Plasticity , 2010, The Journal of Neuroscience.

[25]  O. Hassani,et al.  Discharge Profiles of Identified GABAergic in Comparison to Cholinergic and Putative Glutamatergic Basal Forebrain Neurons across the Sleep–Wake Cycle , 2009, The Journal of Neuroscience.

[26]  H. Freund,et al.  Cognitive functions in a patient with Parkinson-dementia syndrome undergoing deep brain stimulation. , 2009, Archives of neurology.

[27]  Martin Sarter,et al.  Phasic acetylcholine release and the volume transmission hypothesis: time to move on , 2009, Nature Reviews Neuroscience.

[28]  Louise S. Delicato,et al.  Acetylcholine contributes through muscarinic receptors to attentional modulation in V1 , 2008, Nature.

[29]  M. Nicolelis,et al.  Neuronal Ensemble Bursting in the Basal Forebrain Encodes Salience Irrespective of Valence , 2008, Neuron.

[30]  M. Hawken,et al.  Gain Modulation by Nicotine in Macaque V1 , 2007, Neuron.

[31]  M. Sarter,et al.  Article Prefrontal Acetylcholine Release Controls Cue Detection on Multiple Timescales , 2022 .

[32]  A. Kirkwood,et al.  Neuromodulators Control the Polarity of Spike-Timing-Dependent Synaptic Plasticity , 2007, Neuron.

[33]  I. Gritti,et al.  Stereological estimates of the basal forebrain cell population in the rat, including neurons containing choline acetyltransferase, glutamic acid decarboxylase or phosphate-activated glutaminase and colocalizing vesicular glutamate transporters , 2006, Neuroscience.

[34]  Angela J. Yu,et al.  Phasic norepinephrine: A neural interrupt signal for unexpected events , 2006, Network.

[35]  M. Sarter,et al.  Prefrontal cortical modulation of acetylcholine release in posterior parietal cortex , 2005, Neuroscience.

[36]  Angela J. Yu,et al.  Uncertainty, Neuromodulation, and Attention , 2005, Neuron.

[37]  A. Alonso,et al.  Cholinergic Basal Forebrain Neurons Burst with Theta during Waking and Paradoxical Sleep , 2005, The Journal of Neuroscience.

[38]  M. Shadlen,et al.  A representation of the hazard rate of elapsed time in macaque area LIP , 2005, Nature Neuroscience.

[39]  Kenji Doya,et al.  Metalearning and neuromodulation , 2002, Neural Networks.

[40]  T. Robbins,et al.  Selective Behavioral and Neurochemical Effects of Cholinergic Lesions Produced by Intrabasalis Infusions of 192 IgG-Saporin on Attentional Performance in a Five-Choice Serial Reaction Time Task , 2002, The Journal of Neuroscience.

[41]  T. Robbins,et al.  The role of cortical cholinergic afferent projections in cognition: impact of new selective immunotoxins , 2000, Behavioural Brain Research.

[42]  Ralph Barnes,et al.  Expectancy, Attention, and Time , 2000, Cognitive Psychology.

[43]  S. Kakade,et al.  Learning and selective attention , 2000, Nature Neuroscience.

[44]  A. Duque,et al.  EEG correlation of the discharge properties of identified neurons in the basal forebrain. , 2000, Journal of neurophysiology.

[45]  R. Wiley,et al.  The behavioral functions of the cholinergic basalforebrain : lessons from 192 IgG-SAPORIN , 1998, International Journal of Developmental Neuroscience.

[46]  A. Nobre,et al.  Where and When to Pay Attention: The Neural Systems for Directing Attention to Spatial Locations and to Time Intervals as Revealed by Both PET and fMRI , 1998, The Journal of Neuroscience.

[47]  M. Kilgard,et al.  Cortical map reorganization enabled by nucleus basalis activity. , 1998, Science.

[48]  I. Gritti,et al.  GABAergic and other noncholinergic basal forebrain neurons, together with cholinergic neurons, project to the mesocortex and isocortex in the rat , 1997, The Journal of comparative neurology.

[49]  Peter Dayan,et al.  A Neural Substrate of Prediction and Reward , 1997, Science.

[50]  T. Robbins,et al.  Central cholinergic systems and cognition. , 1997, Annual review of psychology.

[51]  C. L. Cox,et al.  Cellular bases of neocortical activation: modulation of neural oscillations by the nucleus basalis and endogenous acetylcholine , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[52]  T. Freund,et al.  GABAergic interneurons containing calbindin D28K or somatostatin are major targets of GABAergic basal forebrain afferents in the rat neocortex , 1991, The Journal of comparative neurology.

[53]  M. Delong,et al.  Electrophysiological studies of the functions of the nucleus basalis in primates. , 1991, Advances in experimental medicine and biology.

[54]  ET Rolls,et al.  Learning and memory is reflected in the responses of reinforcement- related neurons in the primate basal forebrain , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[55]  G. Buzsáki,et al.  Nucleus basalis and thalamic control of neocortical activity in the freely moving rat , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[56]  C. Saper,et al.  Organization of cerebral cortical afferent systems in the rat. II. Hypothalamocortical projections , 1985, The Journal of comparative neurology.

[57]  C. Saper Organization of cerebral cortical afferent systems in the rat. II. Magnocellular basal nucleus , 1984, The Journal of comparative neurology.

[58]  J. Coyle,et al.  Alzheimer's disease and senile dementia: loss of neurons in the basal forebrain. , 1982, Science.

[59]  H. Fibiger,et al.  The nucleus basalis magnocellularis: The origin of a cholinergic projection to the neocortex of the rat , 1980, Neuroscience.