Submillimetre observations of luminous z>4 radio-quiet quasars and the contribution of AGN to the submm source population

We present sensitive 850µm SCUBA photometry of a statistically-complete sample of six of the most luminous (MB 10 13 L⊙), z > 4 radio-quiet quasars, reaching noise levels (1� � 1.5mJy) comparable with the deep blank sky surveys. These observations probe the rest frame far infrared region (�150µm), at luminosity levels for thermal sources comparable with those that IRAS permitted for low redshift quasars. One quasar (BR2237 0607; z = 4.55) is detected at 850µm with a flux of 5.0±1.1mJy (4.5�), whilst a second (BR0019 1522; z=4.52) has a detection at the 2� level. When combined with our previous millimetre measurements of z>4 quasars, we find that there is a large range (5–10) in far infrared (FIR) luminosity (LFIR) at fixed UV luminosity, and that the typical quasar has a LFIR and mass of cool (50K) dust similar to that of the archetyepal low redshift (z=0.018) ultraluminous IRAS galaxy(ULIRG) Arp220 (LFIR � 5 × 10 12 L⊙; Md(cool) � 10 8 M⊙). If one assumes a fiducial FIR luminosity of 5 × 10 12 L⊙ for for all quasars with MB 15 per cent of the sources in the SCUBA deep surveys could be classical broad-lined radio-quiet AGN. Thus if one considers the observed ratio of Seyfert II to Seyfert I galaxies at low redshift and any contribution from totally optically obscured AGN, a significant fraction of the SCUBA source population will harbour AGN and hence the inferred star formation rates from submm fluxes may be overestimated if the active nuclei are bolometrically dominant or the IMF is top heavy.

[1]  Steve Rawlings,et al.  High-redshift radio galaxies and quasars at submillimetre wavelengths: assessing their evolutionary status , 1997, astro-ph/9705094.

[2]  R. McMahon,et al.  Observations of high-redshift objects at submillimetre wavelengths , 1994 .

[3]  E. Greisen,et al.  The NRAO VLA Sky Survey , 1996 .

[4]  M. Irwin,et al.  APM Z ≥ 4 QSO Survey: Spectra and Intervening Absorption Systems , 1996, astro-ph/9604021.

[5]  M. Rowan-Robinson,et al.  Radiative transfer models for IRAS F10214 + 4724 , 1996 .

[6]  Ralf Bender,et al.  The Demography of massive dark objects in galaxy centers , 1997, astro-ph/9708072.

[7]  D. Lemke,et al.  On the Far-Infrared Emission of Quasars , 1998 .

[8]  Richard L. White,et al.  The FIRST Survey: Faint Images of the Radio Sky at twenty centimeters , 1995 .

[9]  R. Blandford,et al.  Resolution and Kinematics of Molecular Gas Surrounding the Cloverleaf Quasar at z = 2.6 Using the Gravitational Lens , 1997, astro-ph/9702031.

[10]  Hilo,et al.  SCUBA: A Common - user submillimetre camera operating on the James Clerk Maxwell telescope , 1998, astro-ph/9809122.

[11]  L. Cowie,et al.  Submillimetre-wavelength detection of dusty star-forming galaxies at high redshift , 1998, Nature.

[12]  R. McMahon,et al.  1.25-mm continuum observations of very high-redshift QSOs:is there dust at Z = 4.69? , 1994 .

[13]  M. Rees,et al.  The formation of nuclei in newly formed galaxies and the evolution of the quasar population , 1993 .

[14]  I. Smail,et al.  A Deep Submillimeter Survey of Lensing Clusters: A New Window on Galaxy Formation and Evolution , 1997, astro-ph/9708135.

[15]  Charles M. Telesco,et al.  Star formation in active dwarf galaxies , 1986 .

[16]  J. Dunlop,et al.  High-redshift star formation in the Hubble Deep Field revealed by a submillimetre-wavelength survey , 1998, Nature.

[17]  Patrick Petitjean,et al.  Molecular gas and dust around a radio-quiet quasar at redshift 4.69 , 1996, Nature.

[18]  D. Kunze,et al.  What Powers Ultraluminous IRAS Galaxies? , 1997, astro-ph/9711255.

[19]  J. Dunlop,et al.  Detection of a large mass of dust in a radio galaxy at redshift z = 3.8 , 1994, Nature.

[20]  M. Giavalisco,et al.  A Counts-in-Cells Analysis Of Lyman-break Galaxies At Redshift z ~ 3 , 1998 .

[21]  R. Ibata,et al.  Submillimeter Observations of the Ultraluminous Broad Absorption Line Quasar APM 08279+5255 , 1998, astro-ph/9807293.

[22]  L. Hernquist,et al.  Transformations of Galaxies. II. Gasdynamics in Merging Disk Galaxies: Addendum , 1996 .

[23]  P. Hewett,et al.  Radio properties of optically selected quasars , 1992 .

[24]  M. L. Litvak,et al.  A Direct Test of the Cosmological Model for Cosmic Gamma-Ray Bursts Based on Peak Alignment Averaging , 1997 .

[25]  S. Djorgovski,et al.  The Luminosity Function of z>4 Quasars from the Second Palomar Sky Survey , 1995 .

[26]  Detection of CO (4-3), CO (9-8), and Dust Emission in the Broad Absorption Line Quasar APM 08279+5255 at a Redshift of 3.9 , 1998, astro-ph/9810111.

[27]  Judith S. Young,et al.  The molecular gas distribution in M51 , 1983 .

[28]  J. Huchra,et al.  The Spatial Distribution of Active Galactic Nuclei: I. The Density of Seyfert Galaxies , 1992 .

[29]  Bruce A. Peterson,et al.  The evolution of optically selected QSOs – II , 1987 .

[30]  Arjun Dey,et al.  Dust, Gas, and the Evolutionary Status of the Radio Galaxy 8C 1435+635 at z = 4.25 , 1997, astro-ph/9709124.

[31]  N. Trentham,et al.  Ultraluminous infrared galaxies at high redshift: their position on the Madau plot and their fate , 1998, astro-ph/9812081.

[32]  A. Taylor,et al.  The ultraviolet-to-radio continuum of the ultraluminous galaxy IRAS F10214+4724. , 1993 .

[33]  Rob Ivison,et al.  A hyperluminous galaxy at z = 2.8 found in a deep submillimetre survey , 1997, astro-ph/9712161.

[34]  G. Neugebauer,et al.  1.25 MM OBSERVATIONS OF LUMINOUS INFRARED GALAXIES , 1992 .