The Human Vomeronasal System: A Review

ABSTRACT: Recent publications show that the human vomeronasal organ (VNO) develops and grows during gestation, and is present in all adult humans. The human VNO has a unique ultrastructure, with elongated bipolar microvillar cells that stain with several immunomarkers. These cells show physiological properties similar to chemosensory receptor cells of other mammalian species. The adult human VNO displays species‐specific, gender‐dimorphic and highly stereospecific responses to ligands. The organ's local response, or electrovomerogram, is followed by gender‐specific behavioral changes, modulation of autonomic nervous system function, or the release of gonadotropins from the pituitary gland. Functional brain imaging studies revealed consistent activation of the hypothalamus, amygdala and cingulate gyrus‐related structures during adult human VNO stimulation. These findings present new information supportive of a functional vomeronasal system in adult humans.

[1]  L. Buck,et al.  A Multigene Family Encoding a Diverse Array of Putative Pheromone Receptors in Mammals , 1997, Cell.

[2]  C. Dulac,et al.  A Novel Family of Putative Pheromone Receptors in Mammals with a Topographically Organized and Sexually Dimorphic Distribution , 1997, Cell.

[3]  R. Anholt,et al.  Pheromone regulated production of inositol-(1, 4, 5)-trisphosphate in the mammalian vomeronasal organ. , 1997, Endocrinology.

[4]  N. Ryba,et al.  A New Multigene Family of Putative Pheromone Receptors , 1997, Neuron.

[5]  A. Burdi,et al.  Prenatal growth of the human vomeronasal organ , 1997, The Anatomical record.

[6]  D. Corey,et al.  Electrophysiological Characterization of Chemosensory Neurons from the Mouse Vomeronasal Organ , 1996, The Journal of Neuroscience.

[7]  D. Berliner,et al.  The functionality of the human vomeronasal organ (VNO): Evidence for steroid receptors , 1996, The Journal of Steroid Biochemistry and Molecular Biology.

[8]  A. Berghard,et al.  Sensory transduction in vomeronasal neurons: evidence for G alpha o, G alpha i2, and adenylyl cyclase II as major components of a pheromone signaling cascade , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[9]  B. Hansen,et al.  The human vomeronasal organ: prenatal developmental stages and distribution of luteinizing hormone-releasing hormone. , 1996 .

[10]  D. Berliner,et al.  The human vomeronasal system , 1994, Psychoneuroendocrinology.

[11]  M. Meredith,et al.  Vomeronasal system, LHRH, and sex behaviour , 1994, Psychoneuroendocrinology.

[12]  T. Getchell,et al.  Expression of the putative pheromone and odorant transporter vomeromodulin mRNA and protein in nasal chemosensory mucosae , 1994, Journal of neuroscience research.

[13]  N. Boehm,et al.  Sensory receptor-like cells in the human foetal vomeronasal organ. , 1993, Neuroreport.

[14]  A. Weller,et al.  Menstrual synchrony between mothers and daughters and between roommates , 1993, Physiology & Behavior.

[15]  T. Getchell,et al.  Vomeronasal epithelial cells of the adult human express neuron‐specific molecules , 1993, Neuroreport.

[16]  M. Meredith,et al.  Intracerebroventricular LHRH relieves behavioral deficits due to vomeronasal organ removal , 1992, Brain Research Bulletin.

[17]  J. Weissenbach,et al.  The candidate gene for the X-linked Kallmann syndrome encodes a protein related to adhesion molecules , 1991, Cell.

[18]  L. Stensaas,et al.  Ultrastructure of the human vomeronasal organ , 1991, The Journal of Steroid Biochemistry and Molecular Biology.

[19]  B. I. Grosser,et al.  Effect of putative pheromones on the electrical activity of the human vomeronasal organ and olfactory epithelium , 1991, The Journal of Steroid Biochemistry and Molecular Biology.

[20]  Jose Garcia-Velasco,et al.  The incidence of the vomeronasal organ in 1000 human subjects and its possible clinical significance , 1991, The Journal of Steroid Biochemistry and Molecular Biology.

[21]  R. M. Costanzo,et al.  Morphology of the human olfactory epithelium , 1990, The Journal of comparative neurology.

[22]  A. Ballabio,et al.  Contiguous gene syndromes due to deletions in the distal short arm of the human X chromosome. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[23]  A. Krieger,et al.  Human axillary secretions influence women's menstrual cycles: The role of donor extract from men , 1986, Hormones and Behavior.

[24]  F. Macrides,et al.  Purification and analysis of a proteinaceous aphrodisiac pheromone from hamster vaginal discharge. , 1986, The Journal of biological chemistry.

[25]  K. Dharmsathaphorn,et al.  Ba2+ inhibition of VIP- and A23187-stimulated Cl- secretion by T84 cell monolayers. , 1986, The American journal of physiology.

[26]  M. Hawke,et al.  Clinical and histological evidence for the presence of the vomeronasal (Jacobson's) organ in adult humans. , 1985, The Journal of otolaryngology.

[27]  K. Obata,et al.  Immunochemical identification of subgroups of vomeronasal nerve fibers and their segregated terminations in the accessory olfactory bulb , 1985, Brain Research.

[28]  J. Snow,et al.  Vomeronasal organs and nerves of Jacobson in the human fetus. , 1985, Acta oto-laryngologica.

[29]  Eric B. Keveme Pheromonal influences on the endocrine regulation of reproduction , 1983, Trends in Neurosciences.

[30]  R. Eccles Autonomic innervation of the vomeronasal organ of the cat , 1982, Physiology & Behavior.

[31]  Kate Thompson,et al.  Olfactory influences on the human menstrual cycle , 1980, Pharmacology Biochemistry and Behavior.

[32]  W. McGrew,et al.  Menstrual synchrony in female undergraduates living on a coeducational campus , 1980, Psychoneuroendocrinology.

[33]  L. Monti-Bloch,et al.  A comparative physiological and pharmacological study of cat and rabbit carotid body chemoreceptors , 1980, Brain Research.

[34]  M. Meredith,et al.  Vomeronasal pump: significance for male hamster sexual behavior. , 1980, Science.

[35]  C. Wysocki Neurobehavioral evidence for the involvement of the vomeronasal system in mammalian reproduction , 1979, Neuroscience & Biobehavioral Reviews.

[36]  Margaret A. Johns,et al.  Urine-induced reflex ovulation in anovulatory rats may be a vomeronasal effect , 1978, Nature.

[37]  F. Bojsen-møller Demonstration of terminalis, olfactory, trigeminal and perivascular nerves in the rat nasal septum , 1975, The Journal of comparative neurology.

[38]  M. McClintock,et al.  Menstrual Synchrony and Suppression , 1971, Nature.

[39]  H. M. Bruce An Exteroceptive Block to Pregnancy in the Mouse , 1959, Nature.

[40]  R. E. McCotter A note on the course and distribution of the nervus terminalis in man , 1915 .

[41]  J. Johnston The nervus terminalis in man and mammals , 1914 .

[42]  Charles Brookover The nervus terminalis in adult man , 1914 .

[43]  B. Schaal,et al.  “Microsmatic Humans” Revisited: The Generation and Perception of Chemical Signals , 1991 .

[44]  M. Halpern The organization and function of the vomeronasal system. , 1987, Annual review of neuroscience.

[45]  S. Shirley,et al.  Mammalian Semiochemistry: The Investigation of Chemical Signals Between Mammals , 1984 .

[46]  J. Vandenbergh 4 – Pheromonal Regulation of Puberty , 1983 .

[47]  M. Johns The Role of the Vomeronasal System in Mammalian Reproductive Physiology , 1980 .

[48]  P. Graziadei,et al.  Functional Anatomy of the Mammalian Chemoreceptor System , 1977 .

[49]  Richard L. Doty,et al.  7 – The Pheromone Concept in Mammalian Chemical Communication: A Critique , 1976 .

[50]  Fj Kallmann The genetic aspects of primary eunuchoidism , 1944 .