The Inviscid Burgers Equation with Brownian Initial Velocity

Abstract:The law of the (Hopf-Cole) solution of the inviscid Burgers equation with Brownian initial velocity is made explicit. As examples of applications, we investigate the smoothness of the solution, the statistical distribution of the shocks, we determine the exact Hausdorff function of the Lagrangian regular points and investigate the existence of Lagrangian regular points in a fixed Borel set.

[1]  R. Getoor Splitting times and shift functionals , 1979 .

[2]  S. Jaffard The multifractal nature of Lévy processes , 1999 .

[3]  J. G. Wendel,et al.  The exact hausdorff measure of the zero set of a stable process , 1966 .

[4]  S. James Taylor,et al.  Mathematical Proceedings of the Cambridge Philosophical Society The measure theory of random fractals , 2022 .

[5]  E. Aurell,et al.  The inviscid Burgers equation with initial data of Brownian type , 1992 .

[6]  B. Fristedt,et al.  Lower functions for increasing random walks and subordinators , 1971 .

[7]  M. Yor,et al.  Continuous martingales and Brownian motion , 1990 .

[8]  Aimé Lachal Sur la distribution de certaines fonctionnelles de l'intégrale du mouvement Brownien avec dérives parabolique et cubique , 1996 .

[9]  Bert Fristedt,et al.  Sample Functions of Stochastic Processes with Stationary, Independent Increments. , 1972 .

[10]  The packing measure of a general subordinator , 1992 .

[11]  E Weinan,et al.  Statistical properties of shocks in Burgers turbulence , 1995 .

[12]  J. Hawkes On the potential theory of subordinators , 1975 .

[13]  S. Aspandiiarov,et al.  Some New Classes of Exceptional Times of Linear Brownian Motion , 1995 .

[14]  M. Avellaneda Statistical properties of shocks in Burgers turbulence, II: Tail probabilities for velocities, shock-strengths and rarefaction intervals , 1995 .

[15]  John Hawkes,et al.  On the Hausdorff dimension of the intersection of the range of a stable process with a Borel set , 1971 .