The Inviscid Burgers Equation with Brownian Initial Velocity
暂无分享,去创建一个
[1] R. Getoor. Splitting times and shift functionals , 1979 .
[2] S. Jaffard. The multifractal nature of Lévy processes , 1999 .
[3] J. G. Wendel,et al. The exact hausdorff measure of the zero set of a stable process , 1966 .
[4] S. James Taylor,et al. Mathematical Proceedings of the Cambridge Philosophical Society The measure theory of random fractals , 2022 .
[5] E. Aurell,et al. The inviscid Burgers equation with initial data of Brownian type , 1992 .
[6] B. Fristedt,et al. Lower functions for increasing random walks and subordinators , 1971 .
[7] M. Yor,et al. Continuous martingales and Brownian motion , 1990 .
[8] Aimé Lachal. Sur la distribution de certaines fonctionnelles de l'intégrale du mouvement Brownien avec dérives parabolique et cubique , 1996 .
[9] Bert Fristedt,et al. Sample Functions of Stochastic Processes with Stationary, Independent Increments. , 1972 .
[10] The packing measure of a general subordinator , 1992 .
[11] E Weinan,et al. Statistical properties of shocks in Burgers turbulence , 1995 .
[12] J. Hawkes. On the potential theory of subordinators , 1975 .
[13] S. Aspandiiarov,et al. Some New Classes of Exceptional Times of Linear Brownian Motion , 1995 .
[14] M. Avellaneda. Statistical properties of shocks in Burgers turbulence, II: Tail probabilities for velocities, shock-strengths and rarefaction intervals , 1995 .
[15] John Hawkes,et al. On the Hausdorff dimension of the intersection of the range of a stable process with a Borel set , 1971 .